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In this presentation…
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• Reminder of  the principles of 
electrokinetics

• Benefits and potentials
• As a combined technique

• Real-world challenges

• Current work



Electrokinetic Remediation
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H2O → 2 H+ + ½ O2 (↑) + 2 e- 2H2O + 2e- → 2OH- + H2 (↑)



Electrokinetic Remediation
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Electro-osmosis:
Movement of water (towards the cathode only)



Electrokinetic Remediation
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Electromigration:
Movement of ions

Cations (+) à cathode (-)
Anions (-) à anode (+)



Electrokinetic Remediation

6

Electrophoresis:
Movement of particles

+ charged particles à cathode
- charged particles à anode



• Combine with
• Bio/phyto
• Chemical oxidation
• In-situ barrier 

formation
• EKR fencing
• Colloidal grouting

Advantages of Electrokinetic Remediation
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• In-situ (or ex-situ)
• No need to remove/disturb material
• Worker safety

• Cheap (power, labour and consumables)

• Adaptable
• Electrode material
• Electrode placement
• Electrolyte
• Voltage
• Additives
• Duration
• (In-)organic + radionuclide

Cathode
Anode

Injection well



Combination with biological treatment
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Combination with gentle remediation options?
• Speed up movement of nutrients and/or pollutants

Effect of electrokinetics on biota?



In-situ Chemical Oxidation (ISCO)
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Relatively well-established technique for the 
degradation of organic pollutants 

soluble oxidants are injected into a 
substrate

EKR used to enhance transport

Issues:
• Residual toxicity
• Oxidation of radionuclides could increase 

mobility
Non-radiological contaminants (e.g. PAHs) at 

nuclear sites are becoming increasingly important



Ferric Iron Remediation and Stabilisation
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Purkis et al., in prep; Cundy et al., Appl. Geochem., 2005, 20, 841

Sacrificial iron-rich electrodes
in-situ generation of iron-

rich barriers for soil or sub-
surface stabilization and 
contaminant containment

Experimental results:
• Barrier growth over 

realistic timescales 
(months)

• Low cost (Single-digit to 
tens of USD)

• Low energy (< 1 V.cm-1)
• Scalability: 1m +



Colloidal Silica Grouting
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Colloidal silica properties well 
characterised by University of 
Strathclyde
• Immobilisation of 

radionuclides
• Initial electrokinetic tests 

show potential for “purge 
and trap” applications

Preliminary results show that Cs and Sr can migrate through colloidal silica block



Technology readiness level
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TRL for 
non-nuclear

TRL for 
nuclear Duration? Cost? Comments

EKR 6 - 9+ 3 - 6 Variable Low
ü Flexible

û Limited nuclides 
tested

Bio- / 
Phyto- 6 - 7 3 - 5 High Low ü Sustainable

û Slow

ISCO 4 - 6 2 - 3 Low Variable ü Quick
û Toxicity

Nano / 
Colloids 4 - 7 3 - 6 Variable High ü Immobilisation

û Unproven

Purkis et al., J. Hazard. Mater., 2021, 413, 125274
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Real-world challenges
Factors that may affect movement:
• pH front – redox reactions – solubility
• Reactions at the cathode – gas generation, 

corrosion
• Substrate – permeability, active sites?
• Other ions – competition, ionic strength
• Organic ligands / colloids – complexation, 

solubility
• Pore water / groundwater – flowing?
• Precipitation / evaporation
• Biota – bioturbation, effect on organisms?

Wider range of experimental conditions to explore in order to 
increase TRL of electrokinetic remediation for nuclear applications



14

• Stable Cs and Sr 
• Clayey, organic-rich soil simulating material found in the Fukushima exclusion zone

Purkis et al. (2021) Applied Geochemistry, 125, 104826

• Caesium and strontium mobilised by electromigration towards the negatively charged 
cathodic region

• 80%+ reduction in Cs across much of (2/3) cell
• Cs becomes increasingly intractable with longer maturation times

Treatment of organic-rich soils



Effect of hydrodynamics & hydraulic head
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Lab-based electrokinetic study:
• Movement of Sr, I, Re through sand and sand/clay
• Cells exposed to cycles of evaporation followed by localised 

reintroduction of water
• Direction of re-saturation of substrate worked against electrokinetics

Deployment considerations: Hydrodynamics at location, time of year, 
climate, extreme weather events, shelter / protection?

Future work:
• More realistic environmental 

conditions
• Quantify competition between 

electrokinetics and simulated 
groundwater flow



Treatment of invasive plant species?
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Potential benefits:
• More environmentally friendly than chemical herbicides
• Targeted, with no run-off of chemicals
• Effective at all times of year even when weeds are not actively growing
• In-situ treatment is important as physical removal / disturbing soil may 

not be desirable at radiologically contaminated sites



Treatment of invasive plant species?
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Commercially available electrical treatment of weeds:
• High AC voltage at frequencies of 18kHz and above
• Generator or tractor powered
• Short contact time (5-10 seconds)
• Energy turned into heat
• Plant is boiled from inside out
• Independent assessment by RSK ADAS Ltd shows similar % 

reduction in weeds as herbicide after 3 electrical treatments

New approach currently being trialled in collaboration with two external SMEs:
• A safer, variable voltage
• Longer contact time – set up and walk away
• Heat not expected to be the dominant mechanism



Difficult-to-measure radionuclides in 

cementitious materials
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Increasing the TRL for nuclear:
• Relevant material for decommissioning

• Solid matrix
• Embedded electrode
• Electrolyte

• Simultaneous study of 5 radionuclides
• DTM radionuclides less commonly studied
• Two mechanisms for radionuclide 

contamination included
• Sorption
• Incorporation



Future work on combined method with 

colloidal silica grouting 
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Initial electrokinetic tests at University of Strathclyde promising
• Voltage gradient important to prevent degradation of silica grouting

Future work (Southampton):
• Explore differently charged 

analytes
• Add clays/organics into the sand
• Incorporate sand/clay into the 

silica gel
• Simulated Sellafield groundwater 

as electrolyte



Conclusions
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• EKR: in-situ, cheap, flexible
• Value in combined approaches

• Current work focusing on increasing the TRL for nuclear applications

Looking beyond TRANSCEND
Focus: integration of electrochemical / 
electrokinetic and microbiological interventions 
for remediation and critical metal recovery from 
U mining and other radionuclide-impacted sites 
and wastes in central Europe

• FIRS: iron barriering
• Electro-grouting: colloidal Si
• Biological control
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