

Optimising M-S-H Cement using Brucite

Mercedes Baxter Chinery Imperial College London

Supervisors: Prof. Luc Vandeperre, Department of Materials; Dr. Hong Wong, Department of Civil and Environmental Engineering

Background

- Sludges from Sellafield ponds need to be turned into a waste form
- Known to be rich in Mg(OH)₂
- A novel cement based on MgO and SiO₂ sets as strong as OPC
- Opportunity to use the waste as an encapsulating cement

Previous Work

- M-S-H system using MgO as raw material
- Optimised by Zhang (DIAMOND, 2012)
- Compressive strength as expected
- Good dimensional stability

Optimising Cement

- Investigating how replacing MgO with Mg(OH)₂ affects the properties
 - Fluidity
 - Compressive Strength
 - Composition
- Improve the properties so in line with the requirements

Initial tests

- Comparison of systems
 - Mg/Si ratio maintained as 1
 - Additives
- Mix wasn't very fluid
- Didn't set within 7 days
- Very little strength development

Results

- Mg(OH)₂ does not dissociate
- Lack of strength development

Results

- Fluidity
 - NaHMP
 - Giessfix/Dolapix
- MSH development
 - MgCO₃ /MgNO₃
- Dimensional Stability
 - Addition of sand

The dissolution of Mg(OH)₂

- Mg(OH)₂ most stable form
- Need to find the conditions for which Mg(OH)₂ wants to dissociate

Promoting Mg(OH)₂ dissolution

- Cure samples under a variety of pH conditions
- XRD analysis of the samples
- Recreate conditions within the MSH

Next Steps

- Testing durability, mechanical properties and understand composition
- Understand how to adapt to a sludge based cement

Improving *in situ* acoustic characterisation of suspensions with machine learning methods

Joe Hartley, University of Leeds

Theme 1 – Integrated Waste Management

14/05/2021 Joint Nuclear Event Webinar

Background

- Graduated from the University of Sheffield in 2019.
 - \circ Material Science and Nuclear Engineering MEng.
 - FYP: A Dissolution Study of Thermally Treated Chabazite By Hot Isostatic Pressing.
- October 2020: Started PhD at University of Leeds:
 - $_{\odot}$ $\,$ Advanced Ultrasonic Characterisation of Slurry Flows

Research Challenge

- ILW legacy sludge at Sellafield needs to be pumped out of ponds to be processed.
- Characterisation data on the sludge is scarce;
 - Remote online monitoring system is needed to characterize the sludge during pipe-flow.

Graphite 66,000 m³

- Plutonium contaminated material 38,700 m³
- Conditioned 26,600 m³
- Contaminated metals 25,600 m³
- Activated metals 18,400 m³
- Contaminated other materials 17,100 m³
- Others 15,100 m³
- Fuel cladding & miscellaneous wastes 14,600 m³
- Flocs 14,200 m³
- Mixed wastes 11,000 m³

https://ukinventory.nda.gov.uk/wp-content/uploads/2020/01/2019-Waste-Report-Final.pdf https://www.youtube.com/watch?v=Yu7-D37SKOY&ab_channel=SellafieldLtd

Similar Use of Acoustics

Acoustic Backscatter System has been used industrially to characterise slurries:

P.D. Thorne, D.M. Hanes / Continental Shelf Research 22 (2002) 603-632

Thorne, Hanes; A reveiw of acoustic measurement of small-scale sediment processes

DOI:10.1016/j.mineng.2011.12.003

Acoustic Instrumentation

- UVP-DUO from Met-Flow.
- Has been used in the department for nearly a decade good expertise.
- Frequency range from 1–8 MHz
- Active radii for the transducers are 2.5 10 mm; 2.5 or 5 mm is ideal for non-intrusive attachment on pipelines.

UVP Monitor Model UVP-DUO With Software Version 3, User's Guide, Draft Ed., Met-Flow, Release 5, 1/07/02.

Progress since last meeting

- Moved to Leeds
- Lab inductions
- MatLab Courses
- Python Courses
- Recorded data for analysis:
 - Spherical glass particles and irregular plastic material
- Completed data analysis in Excel
- Edited code in Matlab to find sediment attenuation coefficient
- Partially converted this to a Python script

Speherical Glass Particles

Material Name	Manufacturer	Particle d ₅₀ (µm)
Honite-22	Guyson	45.5
Honite-16	Guyson	78.6
Honite-12	Guyson	173.4

DOI: 10.1121/2.0001303

DOI:10.1109/ULTSYM.2017.8091603

https://www.guyson.co.uk/aftersales/ guyson-blast-media/glass-blast-media

Experimental Setup

DOI: 10.1121/2.0001303

Backscatter Voltage

$$V_{RMS} = \frac{k_t k_s}{\Psi r} M^{0.5} e^{-2r(\alpha_w + \alpha_s)}$$

 V_{RMS} – backscatter voltage k_s – sediment specific backscatter constant k_t – transducer specific backscatter constant Ψ –near field correction factor r – distance from transducer M – concentration of sediment (g/l)

 α_w / α_s – attenuation due to water and sediment respectively

$$G = \ln(\Psi r V) = \ln(k_t k_s) + \frac{1}{2} \ln M - 2r(\alpha_w + \alpha_s)$$

 $\xi^{\tt m}$ – concentration independent attenuation coefficient

 $\alpha_s = M\xi^m$

Determination of sediment attenuation coefficient

$$\xi^m = -\frac{1}{2} \frac{d}{dM} \left[\frac{d}{dr} \left[\ln(\Psi rV) \right] \right] = -\frac{1}{2} \frac{d^2 G}{dM dr}$$

2.5mm 4MHz probe

In situ

Ex situ

2.5mm 4MHz probe

In situ

Ex situ

Results -
$$\xi^m$$

Sediment Attenuation Coefficient

Next Steps

- Transfer current data analysis method on MatLab to Python
- Determine k_s and k_t from the measured data
- Compare the measured backscatter voltage to the calculated backscatter voltage from the equations detailed within the literature
- Repeat this for different sizes of spherical glass particles
- Produce tighter size fractions of the glass particles by sieving
- Use the Mastersizer to verify particle size and distribution
- Run the same tests but with the tighter size fractions to see if there's any difference

ML and How It Will Be Applied

- Machine Learning:
 - making the computer learn from studying data and statistics.
 - a step into the direction of artificial intelligence (AI).
 - program that analyses data and
 learns to predict the outcome.
- Essentially pattern matching '*test*' data to the '*training*' data.

https://www.python.org/static/community_logos/python-logo-master-v3-TM.png | https://whimsical.com/machine-learning-roadmap-2020-CA7f3ykvXpnJ9Az32vYXva

Further steps

- Research more into the various methods of Machine Learning and decide which is best for this application
- Move to looking at bidisperse mixtures of the sieved fractions
- Work through code analysing these data
 - Can we see the two size fractions? Or do we just see a single averaged particle size.
- Understand the Near Field correction factor

Overview of Project Objectives

- Understand current Acoustic Backscatter (AB) performance of UVP for characterisation of nuclear suspension in slurry pipe-flows.
- Investigate Machine Learning (ML) methods to improve UVP particle aggregate size and concentration measurements.
- \succ Investigate the effect of large molecular weight polymers on the AB performance of UVP.
- \succ Compare/ combine FBRM measurements to/ with UVP-DUO and ML system.
- Understand influence of discrete size fractions, as well as varying discrete size fraction mixes, and how ML is affected.
- > Optimise system to give real-time results for real-time flocculation.

Thank you

Email: pmjha@leeds.ac.uk

Development of **University of** sustainable Engineering substitutes for pulverised fly ash in cement & concrete

Andrea Kozlowski, Dept of Civil & Environmental Engineering Supervisors: Joanna Renshaw & Kate Dobson Industrial Supervisor: Frank Taylor, LLWR

2

Introduction

- Clinker substitutes
 - Reduce CO₂ emissions
 - Improve mechanical properties
 - Reduce costs
- Common substitute: Pulverised Fly Ash (PFA)
 - Coal combustion residue
 - Used in Ordinary Portland cement (OPC) to encapsulate LLW

P UK phase-out coal-fired power stations in 2025^1 local PFA supply diminishes \rightarrow dependence international suppliers

¹ Department of Energy & Climate Change (18.05.2015) https://www.gov.uk/government/news/government-announces-plans-to-close-coal-power-stations-by-2025 [Accessed: 13.05/2021]

LLWR

- Facility disposal of solid LLW
- Cementation of waste for final storage
- Functions of cement
 - Limits contact ground water & waste
 - Reduce radiation
 - Improve stability of package
 - Promote stability

3

PFA & Alternatives

PFA improves workability & reduces porosity of OPC concrete

4

PhD Project

AIM

- Investigate alternatives for PFA
 - Sustainable
 - Meeting performance standards
- Characterise alternatives' physical, chemical, mechanical properties
- Investigation interaction with radioactive material

ACTIVITIES

- In-situ XCT testing of substitutes
 & reference OPC samples
- SEM on pre- & post-testing samples
- Classify porosity, phases, density of substitute-concrete samples

COLLABORATION

PhD Timeline

Future Work

Characterisation physical, chemical, mechanical properties

Collaboration with LLWR, advancing performance criteria of PFA substituted

cement

Examination samples (different formulations & substitutes)

Understand impact of PFA alternatives on cement properties & performance

Contact me andrea.kozlowski@strath.ac.uk

Simulation of behavioural modification effects in particle-laden flows through polymer additives

Lee Mortimer (PDRA) Supervisor: Prof. Mike Fairweather 14th May 2021

Background

- At Sellafield Ltd, waste suspension sludge flows transport solid-liquid mixtures of radioactive legacy material from ponds, silos and tanks to other interim locations where they can be safely stored.
- Such retrievals are currently underway during POCO operations in plants such as the Pile Fuel Storage Pond, the First Generation Magnox Storage Pond and a number of associated packaging, export and encapsulation plants, and settling, decant and storage tanks.

Sellafield magazine – Issue 02, 2015.

Pile fuel storage pool at Sellafield - IAEA Nuclear Energy Series No. NW-T-2.6 - Decommissioning of Pools in Nuclear Facilities, IAEA.

Motivation

- However, at present these processes are executed sub-optimally and carried out with caution due to the complex nature of the wastes and a lack of understanding of their flow behaviour.
- In practice, the bulk transportive behaviour of interest associated with these activities is sensitive to the material properties and flow conditions. This sensitivity is capable of being exploited, however, and the modification of such quantities to obtain a desired outcome is referred to as **behavioural modification**.

Motivation

• In developing such techniques, solutions can be generated to discourage or encourage waste particle agglomeration within these transport flows, ultimately controlling the extent of long-term particle migration and interaction events.

Motivation

• That said, to develop beneficial behavioural modification techniques the system response to deviations in key parameters must be known. It is extremely difficult, if not impossible, to probe the effects of such variations experimentally.

- HIGH HAMAKER CONSTANT
- Computer simulations provide a means to overcome this difficulty by providing the capability to specify and explore the impact of changes to a set of precise system parameters.
- Let's exploit this and determine what happens when we add low concentrations of polymer additives to the system.

• The accuracy and reliability of such calculations is based upon both the order of the discretisation techniques used for each phase, as well as the fidelity of the models used to predict the wide array of interactions between the phases.

CONTINUOUS PHASE

Direct numerical simulation (DNS)

PARTICULATE PHASE

Lagrangian particle tracking (LPT)

POLYMER PHASE

UNIVERSITY OF LEEDS

Finitely extensible nonlinear elastic model (FENE)

 Focus on coupling the three methods together to obtain a solver capable of predicting particle-polymer interaction.

FENE Model Recap

- FENE (finitely extensible nonlinear elastic) chain model represents the polymer as a sequence of beads connected by nonlinear springs.
- Springs used to model individual Kuhn chains, which would otherwise entail molecular dynamics simulation.

Additional stress τ_{POL} in Navier-Stokes equations is obtained by calculating the conformation tensor C_{ij} which relates to local stretching behaviour of polymers.

Polymer-particle interaction

• During polymer phase calculation, beads which collide with the surface of a particle are considered fixed to that surface point for all subsequent calculations.

- Beads further down the chain are free to move, with bonds between the beads limited in angle.
- Beads feedback spring forces to the particle.
- Upon collisions with further particles, the polymer chain forms a bridge. To save computation time, all forces are now switched off on the polymer save the spring forces, since these are dominant.

Simulation parameters and project aims

- Investigate polymer-particle interaction in fully developed turbulent flows.
- Determine the location and mechanisms by which polymers adsorb onto particles.
- Quantify the extent of polymer-bridging based agglomeration within the channel.

Parameter	St ⁺ ≈ 0.1	St ⁺ ≈ 92
Particle diameter, d_P^*	0.005	0.005
Number of particles, N_P	300,000	300,000
Stokes number, St_{τ}	0.113	91.845
Density ratio, ρ_P^*	2.5	2041
Volume fraction, Θ_P	10^{-4}	10^{-4}
Simulation timestep, Δt^*	0.005	0.005

Parameter	Value
Effective persistence length, λ_P	0.082 μm
Temperature of fluid, T_F	296 K
Rouse relaxation time, $\tau_{1,R}$	0.16 <i>s</i>
Beads per polymer, N_B	10
Viscosity ratio, β	0.95

Simulation results

Initial drag reduction

• Simulation performed with no particles initially to allow effects of drag reduction to settle.

Simulation results

Polymer conformation

• Polymers in near-wall regions tend to be more stretched, and have increased radii of gyration.

Simulation results

Particle statistics

- Addition of polymers causes particle to move faster in the bulk.
- Turbulent motion of particulate phase is reoriented in the streamwise direction.

Simulation results

Particle-polymer interaction statistics ($t^* = 10$)

Each point represents an agglomerate (2+ particles)

- Polymer-particle collisions fairly uniform. Slight increase in wall region.
- Even for low t* = 10, significant agglomeration events have occurred
- Agglomerates (2+ particles) mainly forming within centre of channel in the bulk.

Conclusions & Further work

- Polymer-laden particulate systems have been investigated for flows resembling calcite particles transported in water.
- Drag reduction has been observed, which increases the mean streamwise velocity of the flow for a set pressure gradient forcing.
- This has an indirect impact on the particulate phase dynamics since their carrier fluid dynamics are altered.
- The polymers also have a direct impact on the particles via hydrophobic interaction, leading to significant agglomeration within the bulk.

- Electrostatic interaction also responsible for polymer-particle interaction which adds further complexity to the model.
- What are the effects of variation of polymer parameters, temperature etc. ?
- Can we obtain methods further down the line to instigate breakup for agglomerated structures?

Acknowledgements

This work is supported by a UK Engineering and Physical Sciences Research Council grant at the University of Leeds from the TRANSCEND (Transformative Science and Engineering for Nuclear Decommissioning) project.

Engineering and Physical Sciences Research Council

Thank you for your attention!

New materials and methods for decontamination of effluent

Antony Nearchou, University of Birmingham

14/05/21 TRANSCEND Theme Meeting

Waste Management

- ²³⁵U fission produces fission products such as Ba, Kr, Sr, Cs, I and Xe, with atomic masses distributed around 95 and 135.
- ¹³⁷Cs and ⁹⁰Sr have half-lives of ca. 30 years and produce most of the medium-lived radioactivity in spent fuel. Require removal from liquid waste.

Spent fuel cooling pond at Sellafield. Source: Sellafield Ltd.

- The radionuclides can be immobilised in a solid. Reduces waste volume as well as risk of environmental leaching.
- Current removal methods make use of ion exchange with zeolite materials. This is a facile, inexpensive, selective, consistent and high-capacity approach.

Zeolites and Ion Exchange

Zeolite Clino: $Na_6[Al_6Si_{30}O_{72}](H_2O)_9$

What are Zeolites?

- Crystalline, microporous (< 2nm) aluminosilicates.
- 3D network of connected SiO₄ and AlO₄ tetrahedra.
- Negatively charged framework, balanced by extraframework cations.

Ion Exchange

- Interchange between the zeolite cations and the cations in a salt solution – i.e. Cs⁺ and Sr²⁺.
- Mud Hills clinoptilolite (clino) is used on the SIXEP plant at Sellafield.
- Clino has the best performance of natural zeolites.¹ Pore diameter is 3.5-3.9 Å, similar to hydrated Cs⁺.

Zeolites and Ion Exchange

Zeolite Clino: $Na_6[Al_6Si_{30}O_{72}](H_2O)_9$

🔺 AI 🔴 Na1 🥥 Na2 🍚 Na3 🕘 Na4 📥 Si

The Problem

- Clino is a finite natural resource successor materials needed.
- Considerations needed for a successor:
 - Selectivity against excess competing cations i.e.
 Na⁺, K⁺, Ca²⁺, Mg²⁺ etc.
 - ✤ Cs⁺ vs K⁺ selectivity similar hydrated radii.
 - Performance at different pH.
 - Means of deployment.
 - Retention of immobilised cations.
 - Potential waste forms for geological disposal.

New Material: Umbites

 $K_2 M S i_3 O_9 \cdot H_2 O$ Where M = Zr, Ti, Sn, Ge

🛑 H2O 🛑 K1 🛑 K2 📥 Si 📥 Zr

- 3.1-4.1 Å pore diameters, similar to clino.
- Previous work in the group with Sn-umbites.
- Doping the octahedral M(4+) site with a M(5+) metal improves the Cs⁺ and Sr²⁺ cation affinity.¹
- Doping enhances cation diffusion through the framework.

The Sn⁴⁺ site is 25% doped with Nb⁵⁺ or Sb^{5+.}

Vast increase in Cs⁺ and Sr²⁺ uptake from bulk ion exchanges.

[1] Unpublished work by Tzu-Yu Chen, Dan Parsons and Ryan George University of Birmingham

New Material: Umbites

 $K_2 M Si_3 O_9 \cdot H_2 O$ Where M = Zr, Ti, Sn, Ge

🛑 H2O 🛑 K1 🛑 K2 📥 Si 📥 Zr

Current Research

- Synthesis optimisation of the doped Sn-umbite.
- Further ion exchange performance assessment
 - ✤ Against competitor cations (Cs⁺ vs K⁺).
 - ✤ Varying pH conditions.
 - ✤ Kinetics.
 - Simulant solutions.
 - ✤ Active testing.
- Production of beads, pellets or monoliths. Deployment in an ion exchange bed or column.

Intensity (Offset)

Transformative Science and Engineering for Nuclear Decommissioning

Optimising Synthesis

25% Sb-doped Sn-umbite

Typical synthesis 200°C 24hrs hydrothermal (a)

Explored varying temperature and time. Use of seeding to reduce nucleation time.

- Minimum temperature of 150°C needed.
- ✤ <u>200°C</u>
- $\ge 5 \text{ hrs}$
- \ge 3 hrs with 5% seeding
- ✤ <u>150°C</u>
- ≥ 24 hrs
 - \geq 16 hrs with 5% seeding
- ✤ <u>200°C Microwave</u>
- ≥1 hr
- Exploring reduce time/temp

Ion Exchange – Cs vs K

Synthesis	Sample	Av. Particle Length /μm
(a) 200°C 24hrs	Umbite	1.65 (0.23)
(b) 150°C 24hrs	Umbite	1.09 (0.15)
(c) 200°C 3hrs 5%seed	Umbite	1.50 (0.31)
(d) 200°C 3hrs	Poorly crystalline umbite	-

Exchange with 30 mg exchanger in 15 ml solution. Cs 10 ppm, K 0, 10 and 50 ppm – varying pH.

- Crystalline sample show consistent Cs removal with K slight drop off at basic pH.
- Poorly crystalline sample (d) shows sharp drop off with K in acid.
- Consider: important role of H⁺ in ion exchange.

Acidic pH 1.0-2.5

Basic pH 9.5-11.0

Ion Exchange – Cs, Sr vs M

Synthesis	Sample	Av. Particle Length /μm
(a) 200°C 24hrs	Umbite	1.65 (0.23)
(b) 150°C 24hrs	Umbite	1.09 (0.15)
(c) 200°C 3hrs 5%seed	Umbite	1.50 (0.31)
(d) 200°C 3hrs	Poorly crystalline umbite	-

Sr 10 ppm, K 0, 10 and 50 ppm

Ion Exchange with 30 mg exchanger in 15 ml solution. Acidic pH <2.5.

Solutions tested:

- Sr 10 ppm, K 0, 10 and 50 ppm
- Cs and M 50 ppm. Where M is Na, K, Mg, Ca and Sr.
- Sr and *M* 50 ppm. Where *M* is Na, K, Mg, Ca and Cs.

Cs or Sr 10 ppm, M 50 ppm

Kinetics of Ion Exchange

- Exchanger: Umbite 200 °C 24 hrs
- Solution: Cs 10 ppm
- 30 mg exchanger in 15 ml solution
- Batch procedure
- Equilibrium achieved within 5 minutes

Compared to Clino:

- Previous work has shown that clino reaches equilibrium at around 6 hours.^{1, 2}
- This is for natural and pre-treated clino
- Cs concentration: 5, 300 and 1500 ppm

First 10 minutes of exchange

Exchange over 24 hours (logarithmic)

Pellet Production

- Production of **monoliths/pellets** which can be put used in an exchange be.
- Pellet paste composition:
 - Umbite
 - Temporary binder (PVA solution)
 - Permanent binder (SiO₂, ZrO₂, TiO₂)
- Fired to calcine the material and remove the PVA - produces mesopores.
- Test pellet stability under caustic conditions.
- Test pellet structural integrity.
- Early tests show that the pellets maintain ion exchange properties of the powders. Further testing needed.

Fired Umbite Pellet \sim 2 mm diameter

Summary and Future Work

Achievements

- Optimised synthesis of umbites.
- Sustained Cs⁺ removal in the presence of competing cations and in different pH media.
- Sr²⁺ removal is high, but significantly impeded by competitors.
- Cs⁺ uptake is rapid *ca.* 30 seconds.
- Umbites can be prepared into pellets for deployment.

Ongoing and Future Work

- Ion exchange with simulant effluents and active testing.
- Optimising pellet production, to ensure pellets and chemically and mechanically stable.
- Further ion exchange testing of pellets.
- Effect of pretreatment of the umbites on ion exchange.
- Waste forms and leach testing.
- Investigating other new materials of interest.

Acknowledgements

Birmingham: Tzu-Yu Chen, Dan Parsons, Ryan George, James Reed, Phoebe Allan, Joe Hriljac.

ICP-MS: Norman Day, Chris Stark.

Thank you

Email: A.Nearchou@bham.ac.uk

Generation and Transport of Radiolytic Hydrogen in Hydroxide Sludges

Mel O'Leary, DCF, The University of Manchester

NDA Transcend Conference

14/05/2021 NDA Transcend Conference

Introduction

Experimental Setup Transport Measurements Bubbles Conclusions

Mel O'Leary Email: mel.oleary@manchester.ac.uk

Introduction Experimental Setup

Transport Measurements Bubbles Conclusions

Mel O'Leary Email: mel.oleary@manchester.ac.uk

Experimental Overview

Mel O'Leary Email: mel.oleary@manchester.ac.uk

X-rays

Mel O'Leary Email: mel.oleary@manchester.ac.uk

Samples

Probes

12 samples in parallel

Probe

Dosimetry

TRANSCEND

Introduction Experimental Setup Transport Measurements Bubbles Conclusions

Probe

1D Diffusion

Transformative Science and Engineering for Nuclear Decommissioning Diffusion Coefficients

Mel O'Leary Email: mel.oleary@manchester.ac.uk

TRANSCEND

Introduction Experimental Setup Transport Measurements Bubbles Conclusions

Mel O'Leary Email: mel.oleary@manchester.ac.uk

Introduction Experimental Setup Transport Measurements Bubbles Conclusions

Time

Thank you

Time

Highly collimated intense beam

Parameters from Fit

Mel O'Leary Email: mel.oleary@manchester.ac.uk

Mel O'Leary Email: mel.oleary@manchester.ac.uk

Mel O'Leary Email: mel.oleary@manchester.ac.uk

Dosimetry

Mel O'Leary Email: mel.oleary@manchester.ac.uk

TRANSCEND

Dosimetry

TRANSCEND

Diffusion

Scoping studies of ion exchange materials

James Reed, University of Birmingham

Theme Meeting 14/5/2021

Current work: 2nd year PhD student, Hriljac/ Allan group

- 3 ½ years supported by Sellafield Ltd.
- Acknowledgements to Tom Carey and Simon Kellet.
- Aim: to improve ion-exchange characteristics of naturally sourced zeolites by chemical treatments.
- Includes desilication and dealumination of the zeolite framework and phase transformations to improve uptake.

Sellafield Ltd

Why caesium and strontium?

- Cs-137 and Sr-90 are key targets in removal from nuclear waste streams worldwide.
- At the Sellafield site, SIXEP treats 100s m³ per day.
- Currently uses a clinoptilolite sourced from Mud Hills in California.
- Supply limited, new materials must be sourced.

Zeolites

- Al tetrahedra carry negative charge.
- Cations balance this charge by sitting in spaces/ pores within the framework.
- These ions are free to move and can therefore take part in ion-exchange processes.

High Al content: high cation capacity

Used in ion-exchange

Interzeolite Transformations

• Uses a zeolite framework as a starting material to form a different structure

- Changes selectivity
- Increases purity
- Can add value to 'low value' materials

TRANSCEND

Transformative Science and Engineering for Nuclear Decommissioning

Cs: 88 % uptake Sr: 67 % uptake

Z-CLINO (HEU)

Cs: 87 % uptake Sr: 43 % uptake

I-MORD (MOR)

Cs: 97 % uptake Sr: 27 % uptake

N-CLINO (HEU)

Cs: 84 % uptake Sr: 70 % uptake

S-CLINO (HEU)

Cs: 80 % uptake Sr: 78 % uptake

- Caesium uptake good to excellent in all systems.
- Strontium uptake poorer, especially in mordenite.
- Improvement in strontium uptake required.

Monoclinic unit cell *a* = 17.52 Å, *b* = 17.04 Å, *c* = 7.40 Å FD = 17.5 T/1000 Å³

10 and 8 ring channels along [001]

Monoclinic unit cell *a* = 17.52 Å, *b* = 17.04 Å, *c* = 7.40 Å FD = 17.5 T/1000 Å³ 8 ring channels along [100] and [010] 6 ring channels along [001]

Trigonal unit cell *a* = *b* = 13.68 Å, *c* = 14.77 Å FD = 15.1 T/1000 Å³

0.70 M NaOH, 100°C, 24 h I-MORD (MOR) Zeolite-P (GIS) PP bottle Cs: 97 % Sr: 27 %

12 and 8 ring channels along [001]

Orthombic unit cell *a* = 18.26, *b* = 20.53 Å, *c* = 7.54 Å $FD = 17.0 T/1000 Å^3$

Cs: 38 % Sr: 91 %

8 ring channels along [100] and [010]

Tetragonal unit cell *a* = *b* = 9.80 Å , *c* = 10.16 Å $FD = 16.4 T/1000 Å^3$

Partial transformations

- Would this retain some selectivity from the parent zeolite?
- If so, this could lead to valuable selectivity profiles.
- Concern over physical stability of parent zeolite.

MH-CLINO (HEU)	0.4 M NaOH	HEU/CHA
Sr: 67 %	,	Sr: 98 %
Z-CLINO (HEU) Cs: 88 % Sr: 67 %	0.3 M NaOH	HEU/GIS Cs: 85 % Sr: 80 %
I-MORD (MOR) Cs: 97 % Sr: 27 %	0.45 M NaOH	MOR/GIS
	•	Cs: 87 % Sr: 80 %
N-CLINO (HEU) Cs: 84 % Sr: 70 %	0.30 M NaOH	HEU/GIS
		Cs: 84 % Sr: 78 %
S-CLINO (HEU)		HELL/GIS

S-CLINO (HEU)		HEU/GIS
Cs: 80 %		$Cc \cdot 7/ 0/$
Sr: 78 %	,	C_{3} , 74 /0 C_{7} , 88 %
		JI. 00 /0

Generating a series of composites

- Series of composites generated by varying [NaOH].
- Weight fractions of each phase obtained through Rietveld refinement of powder diffraction data.

• Potential to 'tune' material for a given waste stream.

For Z-CLINO:

Zeoclere clinoptilolite

Mud Hills clinoptilolite

HEU/GIS composite (from Zeoclere)

CHA (from Mud Hills clinoptilolite)

Cation homogenisation

HEU/CHA composite (from Mud Hills)

Future work:

- Collect ion-exchange data for all composite series
- New 'mock' waste streams
- Active testing

[1] A. Dyer, J. Hriljac, N. Evans, I. Stokes, P. Rand, S. Kellet, R. Harjula, T. Moller, Z. Maher, R. Heatlie-Branson, J. Austin, S. Williamson-Owens, M. Higgins-Bos, K. Smith, L. O'Brien, N. Smith and N. Bryan, Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 2473-2491.

[2] <u>https://theconversation.com/why-cant-we-predict-when-a-volcano-will-erupt-53898</u>

[3] Images taken from Google earth

Thank you

jlr552@student.bham.ac.uk

A Monte Carlo Study of Nanoparticles Relevant to Nuclear Waste

Ella Schaefer, UoM

Integrated Waste Management – Theme 1

14.5.21 ella.schaefer@postgrad.manchester.ac.uk

Background

What type of NPs?

Nuclear – light metal hydroxides/oxides (e.g. Al₂O₃ and Mg(OH)₂)

Why Oxides/Hydroxide NPs?

- Present in waste storage ponds
- From corrosion of the cladding on nuclear fuel rods in the nuclear waste storage ponds in Sellafield

Figure 1 – a) Photograph of a legacy pond at Sellafield and b) Close up of a legacy pond at Sellafield showing cloudy water containing particulates

Figure 1 – a) Photograph of a legacy pond at *Sellafield* and b) Close up of a legacy pond at *Sellafield* showing cloudy water containing particulates **Figure 2** – **S**chematic showing an image of brucite compound inside 'water'

Background

Why Nanoparticles (NPs)?

- Irradiated NPs produce chemical changes in the surrounding media
 Radiation
- Including •OH, low E e⁻s and H₂
- In healthcare •OH and low E e⁻s are used in radiotherapy
- H₂ formation is relevant to nuclear safety cases –
 Fukushima (tsunami caused 3 H₂ explosions) and
 Chernobyl (reaction with H₂ contributed to the roof blowing off reactor 4)

A Simplified View of an Irradiated NP

Figure 3 – Diagram showing the irradiation of a NP resulting in various radiolytic species, noting two of interest; the hydroxyl radical and gaseous molecular hydrogen.

Radiation Interaction with NP

A few important processes that occur when a NP is irradiated:

• Photoelectric effect – absorption of a photon resulting in the emission of an e⁻

Radiation Interaction with NP

A few important processes that occur when a NP is irradiated:

• Photoelectric effect – absorption of a photon resulting in the emission of an e⁻

(This includes the *Auger effect* – core e⁻ is ejecting leaving a hole in the core shell to maintain stability a valence e⁻ will move into the vacancy causing a second e⁻ to be ejected

Radiation Interaction with NP

A few important processes that occur when a NP is irradiated:

• Photoelectric effect – absorption of a photon resulting in the emission of an e⁻

(This includes the *Auger effect* – core e⁻ is ejecting leaving a hole in the core shell to maintain stability a valence e⁻ will move into the vacancy causing a second e⁻ to be ejected

 Compton effect - a photon is scattered by a charged particle, typically an e⁻, which is then ejected with the difference of the photon energy being transferred to this recoil electron

Radiation Interaction with NP

A few important processes that occur when a NP is irradiated:

• Photoelectric effect – absorption of a photon resulting in the emission of an e⁻

(This includes the **Auger effect** – core e⁻ is ejecting leaving a hole in the core shell to maintain stability a valence e⁻ will move into the vacancy causing a second e⁻ to be ejected

 Compton effect - a photon is scattered by a charged particle, typically an e⁻, which is then ejected with the difference of the photon energy being transferred to this recoil electron

Figure 7 – Dominance regions for the three absorption processes

Figure 1 – a) Photograph of a legacy pond at *Sellafield* and b) Close up of a legacy pond at *Sellafield* showing cloudy water containing particulates **Figure 2** – **S**chematic showing an image of brucite compound inside 'water'

Radial Dose Distribution – Dose is measured in 1nm sections from the NP surface to the edge of the water sphere

Radial Dose Distributions (RDDs)

- 20 60 keV relates to specific measurements that can be performed at the Synchrotron
- Although E in ponds is much greater, after ~60 keV the underlying physics is the same, MeV can be calculated but require much longer times/computational power
- At lower E dose is higher for a longer range
- Al₂O₃ deposits greater dose than Mg(OH)₂

Figure 9 – Graphs showing the radial dose distributions per incident photon for Al₂O₃, Mg(OH)₂ and water NPs irradiated by a) 20 and b) 60 keV

RDDs as Ratios

Figure 10 – Graphs showing the radial dose distributions per incident photon for Al₂O₃ and Mg(OH)₂ NPs as ratios to Water NPs irradiated by a) 20 and b) 60 keV

Al₂O₃ Scorer

- Simulation was further developed to detect when an ionisation or excitation occurs
- When an ionisation/excitation occurs the process, position and energy of the generated e⁻ is recorded

Figure 11 – Figure showing the ionisations and excitations occurring in a 1500nm world following the irradiation of an Al₂O₃ NP by photons of 20 keV

Figure 12 – Plot of the measured radiolytic hydrogen yields against the difference between energy absorption coefficients of the particulate phase and the aqueous phase [M. O'leary] overlayed with figures showing the ionisations and excitations occurring in a 1500nm world following the irradiation of an Al₂O₃ NP by photons of energies a) 20, b) 30, c) 40, d) 50 and e) 60 keV

Figure 13– Plot of the measured radiolytic hydrogen yields against the difference between energy absorption coefficients of the particulate phase and the aqueous phase [M. O'leary] overlayed with figures showing the ionisations and excitations occurring in a 1500nm world following the irradiation of an Mg(OH)₂ NP by photons of energies a) 20, b) 30, c) 40, d) 50 and e) 60 keV

0.045

0.040

- 0.035

0.030

0.025

0.020

0.015

0.010

Discussion

Difference in colour shows the difference in E

- Much greater activity and E in Al_2O_3
- Especially noticeable at 20 and 30 keV – which is where the switch from Compton to photoelectric processes occur
- Likely due to Auger cascade

Figure 14 – Figures showing the ionisations and excitations occurring in a 1500nm world following the irradiation of an Al₂O₃ NP by a) 20 and b) 30 keV and a Mg(OH)₂ NP by c) 20, and d) 30 keV

The University of Manchester

Ella Schaefer ella.schaefer@postgrad.manchester.ac.uk

Nanotechnology for effluent treatment and radionuclide assay

Dr. Gurpreet Singh Imperial College London Supervisors: Prof. Luc Vandeperre & Prof. Mary Ryan

Previous Works

Proposed developments

- Fortner's group (ref 1) had reported since 2015 about magnetic nanoparticles of mixed Mn/Fe oxide nanocrystals covered with a bilayered oleyl phosphate to adsorb/exchange uranyl ions in solution.
- Adsorption Capacity reported to be 1667 mg/g of mixed oxide nanocrystals.
- In 2018 Imperial's PhD student (Ref 2) further enhanced the work by using pure magnetite coated with oleic acid (12nm in size).

- The nanoparticles were further functionalised with phosphate groups to sequester uranium.
- The reported uptake capacity of Uranyl ions at neutral pH 7 was 1700 mg/g of Fe in 200ppm U(VI) nitrate solution
- This is the highest ever to be reported in the

The TRANSCEND project is aimed at the following:

- 1. To understand the mechanism of adsorption
- 2. To extend the application at acidic pH
- 3. To target other radionuclides with new functionalised coatings
- 4. To investigate magnetic steering of nanoparticles for repairing cracks in concrete

Current Work

- Previous works utilized thermal decomposition method Tedious, Costly & utilizes higher temperatures of 320°C.
- The current work was improvised to test cheaper, quicker & lower working temperatures.
- Co-precipitation & microemulsion techniques were explored
- Various schemes were explored: 2 Finalised to take forward

Scheme – 1 Structures

Magnetite coated with Oleic Acid

Phase-exchanged & coated with silica

Scheme - 2

Uncoated Magnetite in water

Coated magnetite with silica

Future Works

- To optimise the processes & achieve maximum monodispersity
- To thoroughly characterise w.r.t to surface energy, magnetisation values & pore size of silica coating
- To collaborate for active Uranium studies
- To deduce the mechanism of action
- Perform the cost-benefit analysis

Thank you

Email: gsuri@ic.ac.ul

REFERENCES

 Wenlu Li, John T. Mayo, Denise N. Benoit, Lyndsay D. Troyer, Zuzanna A.
 Lewicka, Brandon J. La≮erty, Je≮rey G. Catalano, Seung Soo Lee, Vicki L. Colvin, and John D. Fortner. Engineered superparamagnetic iron oxide nanoparticles for ultra-enhanced uranium separation and sensing. J.
 Mater. Chem. A, 4(39):15022– 15029, 2016.

2. Calì, E. & Qi, Jiahui & Preedy, O. & Chen, S. & Boldrin, D. & Branford, Will & Vandeperre, L. & Ryan, M. (2018). Functionalised magnetic nanoparticles for uranium adsorption with ultrahigh capacity and selectivity. Journal of Materials Chemistry A. 6. 10.1039/C7TA09240G.

Off-Gas Emissions From Vitrification of Nuclear Waste

Alex Stone, Sheffield Hallam University With special thanks to: P. A. Bingham, D. McKendrick, S. Morgan, A. Holloway, A. Nabok Transcend Theme Meeting 2020

12/05/2020 Transcend Theme Meeting 2020

The Problem

- The UK has 133,000 m³ of radioactive waste in storage and an estimated 4,420,000 m³ arising in the future¹
- A majority of this waste is from (or will arise from) site decommissioning and legacy (eg. Sellafield, Magnox)
- Vitrification has been considered as a waste treatment technique for ILW as is already in use for HLW. This involves the heating of waste to high temperatures up to 1400°C which may volatilise some of the components of the waste²

- 1. NDA. (2020). *The 2019 Inventory*. NDA Department for Business, Energy and Industrial Strategy. <u>https://ukinventory.nda.gov.uk/the-2019-inventory/2019-uk-data/</u>
- 2. Caurant, D. (2009). Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes. Nova Science Publishers, Inc.

Waste Survey

- ILW can be particularly problematic because it encompasses a wide range of materials
- High volume wastes of ILW classification:
 - Some Plutonium Contaminated Material (PCM)
 - SIXEP Sand/Clinoptilolite ion exchange material
 - Magnox Sludge

The Project

Gaseous Components of interest

- Radionuclides (¹³⁷Cs, ¹²⁹I, ³⁶Cl, ⁹⁹Tc, ¹⁰⁶Ru, Pu)
 - Toxic to humans and the environment
 - Can accumulate in wildlife
 - Potential for contaminating groundwater
 - Non-active analogues can be used
- Organics (Dioxins, Furans, VOCs)
 - Toxic to humans
 - Accelerates ozone decay
 - Produced from PVC and Wood decomposition
- CO, NOx, SO₂, O₂, H₂O

Experimental Procedure

- Gas is extracted from the furnace at a constant flowrate bubbling through solutions usually of dilute nitric acid or sodium hydroxide.
- Analysis of the solutions by ICP-MS and the flowrate gives a known average concentration of gas.

481(October 2017), 41–50. https://doi.org/10.1016/j.jnoncrysol.2017.10.013

Experimental Procedure

Magnesium

Aluminosilicate

Borosilicate

Mixture Windscale

Waste Loading is indicated in the top left of the image and was selected to maximise WL for each glass.

Clinoptilolite/Sand Mixture

4. Cassingham, N. J., Corkhill, C. L., Stennett, M. C., Hand, R. J., & Hyatt, N. C. (2016). Alteration layer formation of Ca- and Zn-oxide bearing alkali borosilicate glasses for immobilisation of UK high level waste: A vapour hydration study. Journal of Nuclear Materials, 479, 639–646. https://doi.org/10.1016/j.jnucmat.2016.06.009

Chloride Volatilisation

	0wt% Chloride MW Glass (Blank) (ppm)		1wt% Chloride MW Glass (ppm)			2wt% Chloride MW Glass (ppm)			
	Cl	В	Na	Cl	В	Na	Cl	В	Na
Impinger Set 1 (0.7M HNO ₃)	7	1	5	87	3	2	115	-	-
Impinger Set 2 (0.1M NaOH)	1	0	N/A	20	1	N/A	65	3	N/A
Tube Washes	5	0	2	144	11	107	312	-	-
Post Solution Filter	0	0	0	0	0	0	0	0	0
Total	14	1	7	251	15	109	492	-	-

Conclusion and Future Work

- Initial waste glass trials complete with:
 - Simulant contaminated SIXEP sand/clinoptilolite
 - SIXEP sludge
- Good waste loading shown in a number of samples
- Collaboration with real time system developers
- Off Gas system experiments begun
- Future waste/glass modifications to reduce emissions and melting times/temperature

References

- 1. NDA. (2020). *The 2019 Inventory*. NDA Department for Business, Energy and Industrial Strategy. <u>https://ukinventory.nda.gov.uk/the-2019-inventory/2019-uk-data/</u>
- 2. Caurant, D. (2009). *Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes*. Nova Science Publishers, Inc.
- Kim, D., & Kruger, A. A. (2018). Volatile species of technetium and rhenium during waste vitrification. Journal of Non-Crystalline Solids, 481(October 2017), 41–50. <u>https://doi.org/10.1016/j.jnoncrysol.2017.10.013</u>
- Cassingham, N. J., Corkhill, C. L., Stennett, M. C., Hand, R. J., & Hyatt, N. C. (2016). Alteration layer formation of Ca- and Zn-oxide bearing alkali borosilicate glasses for immobilisation of UK high level waste: A vapour hydration study. Journal of Nuclear Materials, 479, 639–646. https://doi.org/10.1016/j.jnucmat.2016.06.009

Thank you

alex.h.stone@student.shu.ac.uk

Simulation of behavioural modification effects in suspension waste pipe flow

Bisrat Wolde, University of Leeds

TRANSCEND Virtual Conference Meeting

14th of May 2021 Virtual Conference

A brief overview of my project:

- Modelling and simulating for Understanding Pond and Silo Sludge Behaviour
- In the decontamination of legacy ponds and silos, the provision of a predictive capability to understand how sludges will behave is crucial to successful retrieval and completion of post operational clean out (POCO) operations
- Develop and validate multiphase direct numerical simulation in a horizontal pipe of radius R, axial length 25R in turbulent flows at Re_{τ} = 360 and 720 based on diameter
- Both polydispersed and irregular shaped particles will be tracked
- Apply behavioural modification effects to the fluid and solid particle properties to promote the desired outcome
- Supervisors: Professor Michael Fairweather

Dr Lee Mortimer

Governing Equations:

The Navier Stokes equation can be expressed as follows for constant density:

 $\nabla . u^* = 0$

$$\frac{\partial u^*}{\partial t^*} + (u^* \cdot \nabla) u^* = -\nabla p^* + \frac{1}{Re_b} \nabla \cdot \tau^* + f_i,$$

Here, $u^*(x^*, t^*)$ is the fluid velocity vector, non-dimensionalised using the bulk velocity, u_b ,

the position vector, x^* and time, t^* non-dimensionalized as $x^* = \frac{x}{D}$ and $t^* = \frac{t}{D/u_b}$ respectively,

 p^* is the non-dimensionalised pressure term for high-velocity flow, $p^* = rac{p}{
ho u_b^2}$,

The bulk Reynolds number Re_b is already a non-dimensional and defined as $u_b D/v$, where, D is the pipe diameter, v is the kinematic viscosity and u_b is the mean bulk velocity,

 τ^* is the non-dimensionalized stress tensor, $\tau^* = \nabla u^* + \nabla u^{*T}$ and f_i is arbitrary forcing terms used in multiphase flows

A solution for the unknow p, u, v and w is sought using continuity equation, $\nabla \cdot \boldsymbol{u} = 0$ and boundary conditions

TRANSCEND

Transformative Science and Engineering for Nuclear Decommissioning

Methods:

To solve the descriptive equations numerically a computational fluid dynamics solver Nek5000 used. This solver is based on spectral element method (SEM) – that is a high order weighted residual technique

Nek5000 is favourable for:

- ✓ High spectral accuracy
- ✓ Very little numerical dispersion and dissipation✓ High parallelisation

The high-level computational algorithm is:

- To integrate the Navier Stokes equations, split
- the controlled volume into small cells (meshing)
- Numerically integrate the Navier-Stokes equations throughout the cells
- Solve numerical equations for u, v, w and p in combination with boundary conditions
- Save the solutions for post processing

Computational mesh and pseudo-colour visualisation of the instantaneous velocity:

Panels: (a) is the computational mesh with Gauss–Lobatto–Legendre quadrature points (N = 7) for both simulations at Re_{τ} = 360 and 720, (b) instantaneous streamwise velocity normalized by bulk velocity, $U_{\rm b}$, (d) and (e) are the instantaneous radial velocities for Re_{τ} = 360 and 720 respectively, (c) is the flows at a different timestep

Fluid results:

$Re_{\tau}=720$

(a) The mean axial velocity profiles DNS validation at $Re_{\tau} = 720$. u_z^* ______ solid lines are present DNS contrasted with, - - dashed lines are El Khoury's DNS, o open circle markers are Den Toonder experiment at $Re_{\tau} \approx 630$, + cross markers are Singh's DNS. (b) - log scale.

(c) Inner scaled statistical profiles root mean square of fluctuating velocities of DNS at $Re_{\tau} = 720$. The axial z_{rms}^* , radial r_{rms}^* , azimuthal θ_{rms}^* , and Reynolds shear stress $\langle u_z | u_r \rangle^*$ as a function of $(1 - r)^*$ compared against the following DNS and experimental datasets. ____ Solid lines are present DNS result, - - dashed lines are El Khoury's DNS, \circ , open circle markers are Den Toonder experiment at $Re_{\tau} \approx$ 630 and + cross markers are Singh DNS at $Re_{\tau} \approx 640$. (d) log scale.

Transformative Science and Engineering for Nuclear Decommissioning

TRANSCEND

Transformative Science and Engineering for Nuclear Decommissioning

Fluid flow results: $Re_{\tau}=277$

(a) Validation of mean axial velocity profiles at $Re_{\tau} = 277. \ u_z^*$, stream wise direction, _____ solid lines are present DNS contrasted with +, cross markers Vreman's dataset. (c) is the statistical root mean square velocity fluctuation profiles validation at $Re_{\tau} = 277$. The axial z_{rms}^* , radial r_{rms}^* , azimuthal θ_{rms}^* , and Reynolds shear stress $< u_z \ u_r >^*$ as a function of $(1 - r)^*$ compared against the Vreman's DNS result. _____ solid lines are present DNS result, +, cross markers are Vreman DNS. b and d are log scales.

A Lagrangian particle tracker has been developed to model large quantities of dispersed solids and to investigate the bulk behaviour of high concentration dispersions:

- > The particles are injected at random position within the fully developed fluid flow domain
- > Assigned the fluid velocity at that location
- > Particle collision with the pipe wall considered to be elastic
- A fourth order Runge-Kutta method implemented to solve the particle equation of motion for each particle at every time-step
- > Statistical data gathered for analysis after letting a few response times to adjust to the surrounding fluid

The non-dimensional particle equations of motion is given by:

$$u_{p}^{*} = \frac{\partial x_{p}^{*}}{\partial t^{*}}$$

$$\frac{\partial u_{p}^{*}}{\partial t^{*}} = \frac{3C_{D}|u_{s}^{*}|}{4d_{p}^{*}\rho_{p}^{*}}u_{s}^{*} + g * (1 - \rho_{p}^{*}) + \frac{3C_{L}}{4\rho_{p}^{*}}(u_{s}^{*} x \omega_{f}^{*}) + \frac{D^{'u_{f}^{*}}}{2\rho_{p}^{*} Dt^{*}} + \frac{Du_{f}^{*}}{\rho_{p}^{*} Dt^{*}}$$
Drag Gravity Lift Virtual Mass Pressure Gradier

TRANSCEND

Transformative Science and Engineering for Nuclear Decommissioning

Multiphase results: $Re_{\tau} = 277$

(a) LPT validation of inner scaled statistical particle mean velocity profiles of a DNS at $Re_{\tau} = 277$, (c) statistical particle profiles, root mean square of velocity fluctuations of a DNS at $Re_{\tau} = 277$ for axial z_{rms}^* , radial r_{rms}^* , azimuthal θ_{rms}^* and Reynolds shear stress $< u_z \ u_r >^*$ shown. — solid lines are current work, and + markers are Vreman at $Re_{\tau} = 277$ DNS, and (b) and (d) are log scale.

Parameters	$St^+ \cong 78$
Particle diameter, $\mathrm{d}_p[\mu m]$	60
Particle diameter, d_p^*	$3.0E^{-03}$
Axial length	25R
Number of particles, N_p	29.4 <i>E</i> ⁺⁰³
Shear stokes number, $St_{ au}$	78
Density ratio, $ ho_p^*$	2.058 <i>E</i> ⁺⁰³
Volume fraction, ϕ	$4.24E^{-05}$
Particle and fluid timestep, Δt^*	$1.0E^{-0.3}$

Multiphase results: $Re_{\tau} = 277$

Probability density function for the particle Reynolds number in viscous, buffer, log-law and bulk flow regions of the pipe at $St^+ = 78$.

Top left is the radial and right is azimuthal. Lower left is the slip velocity and on the right is axial. Solid line: viscous sublayer; dashed: buffer layer; dotted: log-law region; dot- dashed: bulk flow

Dimensional analysis:

$V_c = f(d, D, \phi, (\rho_s - \rho_f)g, \rho_f, \mu)$

Where, $\mu = [ML^{-1}T^{-1}] - Dynamic viscosity$ $g = [LT^{-2}]$ Acceleration due to gravity $V_c = [LT^{-1}]$ critical velocity d = [L] particle diameter D = [L] pipe diameter $Q_s = [L^3T^{-1}]$ solid-phase volumetric flow rate $Q_f = [L^3T^{-1}]$ solid-phase volumetric flow rate $\rho_s = [ML^{-3}]$ Density of solid phase $\rho_f = [ML^{-3}]$ Density of fluid phase

Side note: $\phi = \frac{Q_s}{Q_s + Q_l} = [M^0 L^0 T^0] = [1]$ and $s = \frac{\rho_s}{\rho_f} [M^0 L^0 T^0] = [1]$

To develop a functional relationship the above equation set to:

$$\frac{V_c}{\sqrt{gd(s-1)}} = i_0 \left(\frac{d}{D}\right)^{i_1} \phi^{i_2} \left(1-\phi\right)^{i_3} \left(\frac{\mu}{d\rho_f \sqrt{gd(s-1)}}\right)^{i_4}$$

 $i_0 - i_4$ values determined by regression using experimental data.

The following model derived using linear regressor is:

$$\frac{V_c}{\sqrt{gd(s-1)}} = 1.85 \left(\frac{d}{D}\right)^{-0.18} \phi^{0.154} (1-\phi)^{0.16} \left(\frac{\mu}{d\rho_f \sqrt{gd(s-1)}}\right)^{0.09}$$
(Eq 1)

Transformative Science and Engineering for Nuclear Decommissioning

Experimental deposition data were also plotted against the same empirical correlation (equation 1.) Deposition based dataset plotted against the same empirical correlation.

Dimensional analysis:

To test Rice's (2013) contention that one can evaluate deposition velocity from resuspension or deposition. Experimental deposition data were also plotted against the same empirical correlation (equation 1.)

Pakzonka et al. (1981) investigated using three different pipe diameters, D = 50.8mm, 103mm and 202mm and Al-Lababidi et al. (2012) used D =103mm. Sinclair and Graf dataset also plotted.

The model derived using linear regressor is:

 $\frac{V_c}{\sqrt{gd(s-1)}} = 1.85 \left(\frac{d}{D}\right)^{-0.18} \phi^{0.154} (1-\phi)^{0.16}$ $\left(\frac{\mu}{d\rho_f \sqrt{gd(s-1)}}\right)^{0.09}$ (Eq 1)

Deposition based dataset plotted against the same empirical correlation

Deposition based predictions

Particle distribution in the vertical direction computed as follows:

$$\begin{split} D_{y(t)}^{*} &= \left(\sum_{i=1}^{n_{t}} \frac{(y_{i(t)}^{*} - y_{m(t)}^{*})^{2}}{n_{t}} \right)^{1/2} \\ & (\text{eq 2}) \end{split}$$

Where, $D_{y(t)}^*$, Dispersion function, $y_{i(t)}^*$ is the particle displacement in vertical direction and $y_{m(t)}^*$ is the mean value. The particle mean displacement and dispersion function equation 2 used to analyse if a deposition is occurring.

Transformative Science and Engineering for Nuclear Decommissioning

6 Z - Stream

Particle concentration at t* = 0.1 (red), 3.0(yellow) and 4.5(green)

0.6

0.7

0.8

 $(1-r)^*$

0.9

1.0

Four-way coupling results:

The four way coupling which takes into account Collisions between particles and particle fluid Dynamics.

The mean axial velocity profiles at $Re_{\tau} = 720$. u_{z}^{*} , stream wise direction, ______ solid lines are 1-way coupling and – are four-way coupling. (c) is the statistical root mean square velocity fluctuation profiles validation at $Re_{\tau} = 720$. The axial z_{rms}^{*} , radial r_{rms}^{*} , azimuthal θ_{rms}^{*} , and Reynolds shear stress $< u_{z} \ u_{r} >^{*}$ as a function of $(1 - r)^{*}$. (b) and (d) are log scale.

Parameters	1 way	4-way
Volume fraction	0.001	0.001
Number of	150,000	150,000
particles	,	,
Stokes	1.951	1.951
Diameter of	100 µm	100 µm
particle	·	·
Pipe diameter	0.02m	0.02m
Density ratio	2.71	2.71

TRANSCEND

Transformative Science and Engineering for Nuclear Decommissioning

Planned work:

- Implement four-way coupling with agglomeration
 - o DLVO theory will be applied
- Modelling and understanding pond and silo sludge behaviour
- Apply behavioural modification effects to the fluid and solid particle properties to promote the desired outcome such as reducing particle agglomeration, and hence, the likely deposition of particles during processing
- The behavioural modification effects to be studied includes changes in:
- Temperature
- Ionic strength
- Polymers and pH of the liquid phase

Any questions?

Thank you

pmbw@leeds.ac.uk

Radiation effects on nuclear waste forms: How does the degree of crystallinity in a glassceramic affect radiation tolerance?

Tamás Zagyva – The University of Manchester, Dalton Cumbrian Facility

Theme 1 Integrated Waste Management

14th May 2021 Online

Introduction

Transformative Science and Engineering for Nuclear Decommissioning

Radiation effects on HLW glass-ceramics

Crystal formation in VTR samples

- powellite

– zircon

– zincochromite

- ruthenium oxide
- ceria-zirconia
- barium molybdate

Crystal formation in VTR samples

– powellite

– zircon

- zincochromite

- ruthenium oxide
- ceria-zirconia
- barium molybdate

Powellite formation

Fast cooling rate

Slow cooling rate

Cracking in VTR samples

- horisontal cracking inside large powellite crystals
- cracking of glass <u>around</u> large zircon crystals

TEC (× 10⁻⁶/°C): $\alpha_a = 13.5 \quad \alpha_c = 22.8$ [2]

Ni irradiation experiment

→ change in crystallinity, cracking (?)

Expectations:

substantial change for zircon [4], no (or minimal) change for powellite [5]

[4] Nasdala et al. 2018; [5] Wang 2013

Radiation tolerance of crystals (SEM before & after irradiation)

Radiation tolerant crystals: ceria-zirconia, zincochromite, ruthenium oxide

Radiation tolerance of crystals (SEM before & after irradiation)

Radiation tolerant crystals: ceria-zirconia, zincochromite, ruthenium oxide Substantial swelling of powellite crystal

Radiation tolerance of crystals (SEM before & after irradiation)

Substantial swelling of powellite crystal (bigger than the expected 5%)

Radiation tolerance of crystals (SEM before & after irradiation)

Substantial swelling of zircon crystal (as expected), crystal zones still visible

Radiation tolerance of crystals (SEM before & after irradiation)

Substantial swelling of zircon crystal (as expected), crystal zones still visible

Cracking (SEM before & after irradiation)

Formation of new cracks and crack widening around zircon.

Cracking (SEM before & after irradiation)

Crack healing inside the crystal and formation of microcracks around powellite.

SEM results summary (before and after Ni irradiation)

Radiation tolerance of crystals:

- Radiation tolerant: ceria-zirconia, zincochromite, ruthenium oxide
- Substantial change was observed: zircon, powellite

Cracking:

- Crack healing inside **zircon** and **powellite** crystals
- Formation of new cracks <u>around</u> **zircon** (and **powellite**)
- No crack propagation

EBSD (before Ni irradiation)

powellite

zircon

ceria-zirconia

zincochromite

Raman (before and after Ni irradiation)

Results (so far): no change was observed for powellite, zircon, and zincochromite.

Either the crystals were extremely radiation tolerant, or the Raman penetration depth was deeper than 3 μ m.

Radiation effects on HLW glass-ceramics

Plans for the near future

- Raman and EBSD for amorphisation
- **EPMA** for ion migration
- GIXRD for amorphisation or/and determining swelling rate / strain

Radiation effects on HLW glass-ceramics

References

Articles:

[1] Paterson et al. "Novel glass formulations for post-operational clean out of highly active storage tanks" 2017.

[2] Bayer at al. "Thermal expansion of ABO4- compounds with zircon and scheelite structures" 1971.

[3] Achary et al. "High temperature crystal chemistry and thermal expansion of synthetic powellite (CaMoO4): A high temperature X-ray diffraction (HT XRD) study" 2006.

[4] Nasdala et al. "Irradiation effects in monazite–(Ce) and zircon: Raman and photoluminescence study of Auirradiated FIB foils." 2018.

[5] Wang "Chemical Fractionation in Molybdenum-rich Borosilicate Glass-ceramic and Behavior of Powellite Single Crystal under Irradiation" 2013.

Images:

https://www.gov.uk/guidance/why-underground#the-science-files

https://favpng.com/

Thank you for the help!

Brian O'Driscoll Robert Harrison Laura Leay

Tracey Taylor Mike Harrison

NATIONAL NUCLEAR

Paul Bingham Prince Rautiyal Györgyi Glodán Chetna Tyagi Samir de Moraes Shubeita Carl Andrews

Special thanks for the support from National Nuclear Laboratory.

Contact Details tamas.zagyva@postgrad.manchester.ac.uk

Characterisation of Thermal Treatment

Products

Daniel Parkes, University of Sheffield TRANSCEND May 2021

May 2021 Virtual

Project Drivers

Waste Type	Current Disposal Technique	 × × 	Improvement
HLW (High Level Waste)	Vitrification in borosilicate glass		-
ILW (Intermediate Level Waste)	Compaction and encapsulation in cement	Compaction issues, volume increase and metal reactivity.	Decay storage, thermal treatment, improved encapsulation and decontamination, focus on boundary waste and reclassification to LLW.
LLW (Low Level Waste)	Compaction, incineration and metal decontamination	\checkmark	-

- The purpose of this project is to characterise a range of thermally treated products representative of potential UK ILW waste streams, including an assessment of the radionuclide (surrogate) distribution and durability
- ILW wide range of compositions one solution does not fit all
- Plasma simulants of UK Plutonium Contaminated Material (PCM)
- Geomelt examples from Hanford and Fukushima

PCM – Trials at Valingar - Process

- Valingar (now Tetronics) carried inactive trials for Sellafield on simulant PCM waste
- Plasma vitrification at Sellafield
- Plasma is advantageous as it is high temperature so can cope with the range of PCM waste removing the need for prior drum screening
- Vitrified using 52% Si, 32% Ca, 16% Al glass frit

PCM – Trials at Valingar - Process

	Actual	Drum T Material	Actual Weight	Drum U Material	Actual	Drum V Material (High	Actual	Drum W Material (High	Actual
Drum S Material	Weight [kg]	(High Organic Wood)	[kg]	(High Organic PVC)	Weight [kg]	Inorganic)	Weight [kg]	Metal)	Weight [kg]
Drum & Lid	17.36	Drum & Lid	17.4	Drum & Lid	17.4	Drum & Lid	17.4	Drum & Lid	17.42
PVC Liner	1.86	PVC Liner	1.52	PVC Liner	1.52	PVC Liner	1.52	PVC Liner	1.52
Hand Tools & Ancillary Equipment	20.16	Steel Drum Liner	8.84	Steel Drum Liner	8.78	Steel Drum Liner	8.74	Steel Drum Liner	8.82
Rubber Hose	1.78	Scaffolding Boards	29.4	PVC Suits	12.9	Whitehaven Bricks	18.04	50mm MS Pipe	3.16
Wellingtons	1.86	Total	57.16	Total	40.60	Windscale Spec Concrete	17.14	50mm Pipe Flanged	2.42
PVC Suit + Double Bags	7.24					Total	62.84	Galvanised Steel Sheet	1.30
Paper	0.126							Cast Iron	2.00
Scaffolding Board	1.88							50mm SS Pipe	1.06
Lab Glassware	0.56							1 Beam	10.26
Floor Sweepings	0.54							Steel Scaffolding Poles	9.84
Vermiculite + Water	0.25							Aluminium Scaffolding Poles	0.98
Strippable Coating (Decongelsure)	0.322							6mm Steel Plate	5.20
Polybottles	0.266							22mm Copper Pipe	0.28
Alumina Furnace Bricks	0.568							Total	64.26
Electric Cable (2.5mm)	0.551								
Rubber Gloves	0.25								
Total	55.57	T							

- 5 different drum compositions
- Represents end members of waste at Sellafield
- Unfortunately not all material available – material from Trial 1 (Drum V) and Trial 5 (Drum T)
- Mixed slag glass metal product
- Purple colouration from Cr-Spinels

PCM – Trials at Valingar - Samples

Trial 5 small amount of slag appears to have to two textures:

1. **Crystalline** – clear crystal faces and textures visible.

2. **Porous** – clear rounded pores (holes) visible.

2 cm

Trial 1 small slag/glass pieces attached to drum – glass: slag ratio us spatially variable.

PCM – Trials at Valingar - Analysis

	Sample	Description		
	PCM-V5 (Porous)	Porous material from trial 5		
	PCM-V5 (Crystalline)	Crystalline material from trial 5		
	PCM-V1 (Slag)	Slag sample from trial 5		
PCM-V1 (Mixed) Slag and glass mate		Slag and glass material from trial 5		
	PCM-V1 (Glass)	Hand separated glass material from trial 5		

- Glass Crushing sample preperation for analysis
- Produce 3 size fractions –
- > < 75 μ m chemical, XRF and XRD
- 75 -150 μm PCT dissolution tests
- 150 μm- SEM analysis and MCC-1 dissolution tests.

PCM – Trials at Valingar – Analysis - Composition

- In Valingar samples (left graph) some variation due to drum composition
- Variation in L.Boast PhD (right Graph) vs Valingar different glass frit (Luke 52% Si, 10% Ca, 13% Na, 1% Al and 1.5% Mg and Valingar 52% Si, 32% Ca and 16% Al) important for lab trials.

<u>PCM – Trials at Valingar – Analysis – Mineral Phases</u>

Sample	Identified Phases (Confident)	Identified Phases (Possible)	
PCM-V1 (Slag)	Anorthite $(Ca_xNa_{(1-x)}AI_{(2-x)}Si_xSi_2O_8$	Iron phosphate and Aluminium Oxide	
PCM-V1 (Glass) Amorphous		Amorphous	
PCM –V1 (Mixed)	Anorthite (Ca _x Na _(1-x) Al _(2-x) Si _x Si ₂ O ₈	Iron phosphate and Aluminium Oxide	
PCM –V5 (Porous)	Anorthite $(Ca_xNa_{(1-x)}AI_{(2-x)}Si_xSi_2O_8$	$Na_{x}Ca_{(1-x)}FeSi_{2}O_{8} - diopside?$	
PCM – V5 (Crystalline)	Anorthite (Ca _x Na _(1-x) Al _(2-x) Si _x Si ₂ O ₈	Na _x Ca _{(1-x})FeSi ₂ O ₈ – diopside?	

- Anorthite is common to all samples the ratio of Na:Ca and Si:Al changes between trial 1 and 5
- Possible other minor phases need more evidence from EDX to confirm due to complex pattern, peak overlap and possible solid solutions.
- Glass is amorphous in PCM-V1 (Glass).

PCM – Plans moving forward

- 1. Continue analysis of the PCM Valingar material including results from XRF analysis and SEM/EDX analysis which will help to better understand the structure and mineralogy of the samples.
- 2. Dissolution studies of the samples based on the more detailed analysis will decide which components to carry out the tests on PCT and MCC tests.
- 3. Remake the simulants in the lab on a smaller scale and include Ce as a non-active tracer for Pu interest is in the distribution of the Ce and its level of release during dissolution.

US Geomelt - Samples

- Glass vitrified using ICV of waste from both Hanford, USA and Fukishima, Japan
- Inactive trials demonstrating the technology using inactive tracers of Ce (Pu) and Ds, Re and Sr
- Plan is to complete similar studies as for PCM

Glass	Tracers of Interest	Sample Details
1	Ce	Glass produced in 2003 for the US Dept. of Energy Hanford Site
2	Cs, Re	Glass produced in 2006 for the Hanford Demonstration Bulk Vitrification System (DBVS) project.
3	Cs, Sr	Glass produced in 2020 as part of a series of feasibility trials for a range of water treatment secondary wastes arising from the Fukushima Daiichi NPP disaster.
4	Cs, Sr	Same as above, 2021 glass.

GeoMelt® In-Container Vitrification (ICV)TM

Veolia's geomelt system

Glass 2

Glass 3

- Dr Claire Corkhill and Dr Clare Thorpe
- MIDAS and HADES facilities, UoS
- Valingar (now Tetronics)
- Veolia
- > NNL

