

Small Modular Radiation Experimental Systems: Development and Future Application

Christopher Anderson (and many more), Dalton Cumbrian Facility, University of Manchester Theme 4: Nuclear Materials

03/12/20 Location: Sunny Cumbria

Presentation Schedule

Section 1: Background and doctrine Section 2: Current developments Section 3: Future applications and plans

What is this project?

Small MOdular Radiation Experimental Systems

SMORES

Not as delicious

Based at DCF, West Cumbria

Project has expanded into a community of contributors

Section 1: Background and doctrine

The idea of SMORES is in the name..

With the primary aim being:

• Building a suite of modular components suitable for radiation experiments

This component development will include but is not limited too..

But why develop these systems?

- DCF has a history of building one off systems to serve one project before being abandoned
- Externals don't always have the ability to fully utilise the equipment at DCF
- Extant systems aren't always compatible with each-other
- There is a significant lack of gas related radiation experimental equipment (important because of Sellafield storage).
- Current methods and equipment for radiation experiments could be vastly improved upon with the right components

SMORES aims to remedy all of these issues by adhering to the following..

Core philosophy of SMORES

Section 1: Background and doctrine

Section 2: Current developments in SMORES

Time to be more specific..

The core of SMORES will be based upon a newly designed gas manifold that incorporates the key ideals of the previous slide (first iteration will focus on this).

The manifold is standardised to the following:

- Primarily Swagelok 1/4" tubing and fittings connecting components
- Pressure ratings exceeding 28.4 bar (agreed in the DCF-NNL-Sellafield meeting)
- Arduinos as the microcontrollers (but with CANopen and python interfaces)
- Made of stainless steel

Section 2: Current developments

Repeating Sample Units (RSU's)

Section 2: Current developments

Repeating Sample Units (RSU's)

Solenoid Valve (can be controlled via Arduino)

Swagelok Valves

Section 2: Current developments

SMORES Valves

Manual

Solenoids

Why different types? Cost difference is pretty huge!!

Awaiting delivery to begin testing **Ruby**

ethylene propylene diene monomer rubber

Section 2: Current developments

Steel

Seal:

SMORES Valves

Picture from: https://assuredautomation.com/actuated-valve-training/types-of-valves.php

Controlling SMORES valves

Controlling SMORES valves

```
int solenoidPin = 9;
                                       //This is the output pin on the Arduino
void setup()
  pinMode(solenoidPin, OUTPUT); //Sets that pin as an output
void loop()
{
  digitalWrite(solenoidPin, HIGH);
                                       //Switch Solenoid ON
  delay(1000);
                                       //Wait 1 Second
  digitalWrite(solenoidPin, LOW);
                                       //Switch Solenoid OFF
  delay(1000);
                                       //Wait 1 Second
}
```


Transformative Science and Engineering for Nuclear Decommissioning

Section 2: Current developments

Sensing capabilities

Most sensors will be out of the radiation field

O₂, H₂, NO, N₂O, through Unisense probe sensors

 $\mathrm{CO}_2, \mathrm{CO}, \mathrm{and} \ \mathrm{CH}_4$ through Edinburgh Sensors infra-red gas cards

Radiation hardness testing

299,520 Gy

Actual sensor part

Section 2: Current developments

#include <wire.h></wire.h>	Serial.println(" Default Test");	
#include <spi.h></spi.h>	delayTime = 1000;	
<pre>#include <adafruit_sensor.h></adafruit_sensor.h></pre>	Serial.println();	
<pre>#include <adafruit_bme280.h></adafruit_bme280.h></pre>	}	
unsigned long time;	void loop() {	
#define BME_SCK 13	printValues();	
#define BME_MISO 12	delay(delayTime);	
#define BME_MOSI 11	}	
#define BME_CS 10	void printValues() {	
	Serial.print("Temperature = ");	
Adafruit_BME280 bme;	Serial.print(bme.readTemperature());	
Serial.println(F("BME280 test"));	Serial.println(" *C");	
bool status;	Serial.print("Pressure = ");	
status = bme.begin(0x76);	<pre>Serial.print(bme.readPressure() / 100.0F);</pre>	
if (!status) {	Serial.println(" hPa");	
Serial.println("Could not find a valid BME280 sensor,	Serial.println(" m");	
check wiring!");	Serial.print("Humidity = ");	
while (1);	Serial.print(bme.readHumidity());	
}	Serial.println(" %");	
Serial.println(" Default Test");	Serial.print("Time: ");	
delayTime = 1000;	time = millis();	
Serial.println();	Serial.println(time);	
}	Serial.println();	
	}	

Section 2: Current developments

```
File Edit Format View Help
10:33:02.319 ->
10:33:32.274 -> Temperature = 22.58 *C
10:33:32.274 \rightarrow Pressure = 989.65 hPa
10:33:32.321 -> Humidity = 25.30 %
10:33:32.368 -> Time: 29
10:33:32.368 ->
10:34:02.289 -> Temperature = 23.21 *C
10:34:02.336 -> Pressure = 989.69 hPa
10:34:02.383 -> Humidity = 24.48 %
10:34:02.429 -> Time: 30
10:34:02.429 ->
10:34:32.351 -> Temperature = 23.84 *C
10:34:32.398 -> Pressure = 989.54 hPa
10:34:32.445 -> Humidity = 23.74 %
10:34:32.445 -> Time: 31
10:34:32.445 ->
10:35:02.412 -> Temperature = 24.26 *C
10:35:02.412 -> Pressure = 989.33 hPa
10:35:02.459 -> Humidity = 23.09 %
10:35:02.506 -> Time: 32
10:35:02.506 ->
10:35:32.458 -> Temperature = 24.88 *C
10:35:32.458 -> Pressure = 989.49 hPa
10:35:32.552 -> Humidity = 22.36 %
10:35:32.552 -> Time: 33
10:35:32.552 ->
10:36:02.489 -> Temperature = 25.65 *C
10:36:02.536 -> Pressure = 989.24 hPa
10:36:02.583 -> Humidity = 21.63 %
10:36:02.583 -> Time: 34
10:36:02.630 ->
10:36:32.535 -> Temperature = 26.15 *C
10:36:32.582 -> Pressure = 989.59 hPa
10:36:32.629 -> Humidity = 20.90 %
10:36:32.629 -> Time: 35
10:36:32.676 ->
10:37:02.597 -> Temperature = 26.91 *C
10:37:02.643 -> Pressure = 992.87 hPa
10:37:02.690 -> Humidity = 20.21 %
10:37:02.690 -> Time: 36
10:37:02.690 ->
10:37:32.642 -> Temperature = 27.59 *C
10:37:32.689 \rightarrow Pressure = 995.87 hPa
```

TRANSCEND	File Edit Format View 10:37:32.736 -> 10:38:02.688 -> Te 10:38:02.735 -> Pr 10:38:02.782 -> Hu 10:38:02.782 -> Ti 10:38:02.829 -> 10:38:32.750 -> Te 10:38:32.750 -> Pr 10:38:32.844 -> Hu 10:38:32.844 -> Ti 10:38:32.844 -> Ti	w Help emperature = 28.37 *C ressure = 1001.18 hPa umidity = 18.87 % ime: 38 emperature = 29.05 *C ressure = 1022.39 hPa umidity = 18.22 % ime: 39	clear Decommissioning
Sensor Oose (Gy/	Rate 10:39:02.811 -> Te 10:39:02.811 -> Pr 10:39:02.858 -> Hu 10:39:02.905 -> Ti 10:39:02.905 -> 10:39:32.873 -> Te	emperature = -146.45 *C ressure = 1123.62 hPa umidity = 100.00 % ime: 40 emperature = -146.45 *C	Dose for Critical Damage
A 33	2 10:39:32.873 -> Pr 10:39:32.920 -> Hu 10:39:32.967 -> Ti	ressure = 1123.62 hPa umidity = 100.00 % ime: 41	~5.03 kGy
B 33	2 10:39:32.967 -> 10:40:02.924 -> Te 10:40:02.924 -> Pr	emperature = nan *C ressure = nan hPa	~2.49 kGy
So they did Low dose On the ma Sacrificial	10:40:02.971 -> Hu 10:40:02.971 -> Ti 10:40:03.018 -> 10:40:32.954 -> Te 10:40:33.001 -> Hu 10:40:33.048 -> Ti 10:40:33.048 -> 10:40:33.048 -> 10:41:02.985 -> Te 10:41:03.031 -> Hu 10:41:03.078 -> 10:41:33.031 -> Te 10:41:33.031 -> Te 10:41:33.031 -> Te 10:41:33.031 -> Te 10:41:33.031 -> Te	<pre>umidity = nan % ime: 42 emperature = nan *C ressure = nan hPa umidity = nan % ime: 43 emperature = nan *C ressure = nan hPa umidity = nan % ime: 44 emperature = nan *C ressure = nan hPa umidity = nan % ime: 45</pre>	e surface
Section 2: Current deve	opmenio	Smail wouldr R	adiation Experimental Systems

What about the solenoid irradiation?

More to come in the following weeks..

Section 2: Current developments

Future applications and plans

- Radiolysis and recombination experiments
- Especially those looking to measure gasses during/after irradiations Direct beneficiary of SMORES is my personal project: Gas generation from the radiolysis of water on Uranium and Thorium oxides
- Testing more equipment
 - Sensing equipment
 - More Solenoid valves
 - Mass flow controllers, automated gas syringes, starting the manifold body, and more!

- Experiments with alpha

- An adaptation of the manifold that is compatible for use with the accelerator at DCF is being designed
- Will allow two types of radiation on the same samples to be explored with the same system

Contact Details: christopher.anderson-3@postgrad.manchester.ac.uk 07857420556

Safe Interim Storage of plutonium: Water absorption onto thin-layer plutonium analogues

Transcend Research Consortium

Dr. Dominic Laventine, Prof. Colin Boxall Lancaster University

- Introduction to UK plutonium interim storage
- Synthesis of thin-layer actinide coatings
- Contact angle measurements
- Piezo-crystal nano-balance experiments

Introduction to UK plutonium interim storage

- Synthesis of thin-layer actinide coatings
- Contact angle measurements
- Piezo-crystal nano-balance experiments

Separation and Reprocessing in the UK

- Reprocessing of spent fuel allows the separation of plutonium from uranium and other species
- PUREX process co-extracts Pu and U as nitrates into an acidified raffinate.
- In the UK, further separation of Pu from the U performed at:
 - THORP reprocessing plant (due to close 2018) by hydrazine reduction of the plutonium
 - Magnox reprocessing plant (due to close 2020)

• Ca. 250 tonnes of separated Pu currently stockpiled worldwide. Approx. 137 tonnes is in interim storage in UK whilst the Government "develops its options".

5

Plutonium interim storage in the UK

Interim storage of PuO₂ involves sealing in nested steel containers, under a partial argon atmosphere with (PVC) packing material.

During storage the radioactivity of the plutonium results in heating of the canisters to an estimated central line temperature of 600°C.

PuO₂ is hydroscopic and picks up water during the packaging process. The disposition of this water under the storage conditions is unclear: It may exists in a gaseous state, or be weakly or strongly bound to the PuO₂ surface. Radiolytic and catalytic processes may also result in formation of radicals and other chemical species.

Need to understand how the structure and properties of PuO_2 change with time under storage condition and how this affects water absorption.

Cannister pressurisation

Over time a small number of cannisters have been observed to deform due to pressurisation: this makes storage and efficient heat transfer difficult 5 routes to gas production have been suggested that could contribute to this pressurisation:

- (i) Helium accumulation from a decay
- (ii) Decomposition of polymeric packing material
- (iii) H_2O desorption (steam) from hygroscopic PuO_2
- (iv) Radiolysis of adsorbed water
- (v) Generation of H_2 by chemical reaction of PuO_2 with H_2O , producing a PuO_{2+x} phase.

The last 3 processes all involve PuO_2/H_2O interactions and are complex, inter-connected & poorly understood.

• Experimental methods have been employed to determine extent of H₂O adsorption, typically through measurement of pressure changes and use of the ideal gas equation to indirectly determine water adsorption at the plutonium oxide surface.

• Current models suggest water is initially absorbed onto metal oxides as a chemi-absorbed monolayer followed by multiple, physi-sorbed layers (with possible intermediate layers of differing binding energies).

• Introduction to UK plutonium interim storage

- Synthesis of thin-layer actinide coatings
- Contact angle measurements
- Piezo-crystal nano-balance experiments

Actinide thin layer synthesis

Thin (10-100s nm thick) layers of metal oxide synthesised by drop-coating of salt solutions with surfactant followed by evaporation and calination. Allows surface characteristics to be investigated while using only small amounts of radioactive material.

Cerium, Thorium, and Uranium oxides used as analogues of plutonium oxide due to their similar structures and atomic radii.

50 ug Ce(NO₃)₃ 10 uL H₂O 10 uL MeOH 5% Triton-X Calc.: 350°C

Thin layer depth analyses

Uncoated crystal $F_{25^{\circ}C} = 5833918$ Hz Coated crystal $F_{25^{\circ}C} = 5826468$ Hz D $F_{25^{\circ}C} = -7450$ Hz D m = 42 ug vol = 5.5 x 10⁻⁶ cm³ Thickness = 125 nm

$$\Delta f = -\left(\frac{n{f_0}^2}{A\sqrt{\rho_q\mu_q}}\right)\Delta m$$

$$\label{eq:rho_q} \begin{split} \rho_{q} &= 3.570 \ g.cm^{-1} \quad n = 1 \\ \mu_{q} &= 2.147 \ x \ 10^{11} \ g.cm^{-1}s^{-2} \\ Coated \ area \ &= 1.33 \ cm^{2} \\ Active \ area \ &= 0.46 \ cm^{2} \\ d_{CeO_{2}} &= 7.65 \ g.cm^{-3} \end{split}$$

XRD thickness is ~250 nm, indicating a porisity of 50%

- Introduction to UK plutonium interim storage
- Synthesis of thin-layer actinide coatings
- Contact angle measurements
- Piezo-crystal nano-balance experiments

Microbalance water absorption

- Study the interactions of plutonium oxide and analogues with water.
 - -- Ceria (CeO₂) -- Urania (UO₂ / U₃O₈)
 - -- Thoria (ThO₂)

- -- Plutonium oxide (PuO₂) @ NNL Central Lab
- Use of quartz crystal microbalance methodology to experimentally determine:
 - -- The number of monolayers of water bound to the surface
 - -- The enthalpy of binding of the different layers.
- The QCM measures in-situ mass changes at the surface of a piezoelectrode. Changes in mass due to absorption or desorption at the electrode surface result in resonant frequency changes of the quartz crystal, and can be directly related via the Sauerbrey equation:

$$\Delta f = -\left(\frac{n{f_0}^2}{A\sqrt{\rho_q\mu_q}}\right)\Delta m$$

 Through control of temperature and partial pressure of the absorbed gas, the amount of water and enthalpy of absorption can be calculated.

Piezo-crystal nano-balance

Metal crystal transducer and GaPO₄ piezoelectric crystals allow higher temperature measurements compared to typical QCM.

Water absorption: Pilot experiments

Frequency changes due water adsorption onto quartz crystals at 25°C, 10% humidity. Uncoated crystals showed no appreciable water absorption. Ceria-coated crystals showed a reduction in frequency due to absorption of water.

Different amounts of water were added to the pre-dried system at RT and equilibrated for 4 hours.

The change in frequency is proportional to the mass of water absorbed onto the ceria, and increased as the amount of water increased.

Ceria films on GaPO₄ crystals: Humidity variation(old)

The BET equation allows the volume of a monolayer and the enthalpy of absorption to be calculated:

A plot of P/V(P₀-P) against P/P₀ gives an intercept of $1/V_mC$ and a gradient of $(C - 1)/(V_MC)$ therefore we can calculate:

$$V_{m} = 2.43 \times 10^{-12} \text{ m}^{3} \quad \text{SA} = 28 \text{ m}^{2}\text{g}^{-1}$$

$$\Delta H_{abs} = 44.3 \text{ kJmol}^{-1} \quad \Delta H_{bind} = 2.5 \text{ kJmol}^{-1}$$

$$TRANSCEND \quad \text{NATIONAL NUCLEAR} \qquad \text{Lancaster Universite}$$

Ceria films on GaPO₄ crystals: Humidity variation(old)

The BET equation allows the volume of a monolayer and the enthalpy of absorption to be calculated:

A plot of P/V(P₀-P) against P/P₀ gives an intercept of $1/V_mC$ and a gradient of $(C - 1)/(V_MC)$ therefore we can calculate:

$$V_{m} = 2.43 \times 10^{-12} \text{ m}^{3} \qquad \text{SA} = 28 \text{ m}^{2}\text{g}^{-1}$$

$$\Delta H_{abs} = 44.3 \text{ kJmol}^{-1} \qquad \Delta H_{bind} = 2.5 \text{ kJmol}^{-1}$$

$$TRANSCEND \qquad \text{National Nuclear} \qquad \text{Lancaster}$$

Ceria films on GaPO₄ crystals: Humidity variation

The BET equation allows the volume of a monolayer and the enthalpy of absorption to be calculated:

A plot of P/V(P₀-P) against P/P₀ gives an intercept of 1/VmC and a gradient of $(C - 1)/(V_M C)$ therefore we can calculate:

NATIONAL NUCLEAR

Lancast

 $V_{\rm m} = 9.13 \times 10^{-14} \,{\rm m}^3$ SA = 10.6 m²g⁻¹

 $\Delta H_{abs} = 52.0 \text{ kJmol}^{-1} \qquad \Delta H_{bind} = 10.2 \text{ kJmol}^{-1}$

Ceria films on GaPO₄ crystals: Humidity variation

Oxide	Prec. Salt	BET slope X 10 ¹³	BET incpt. x 10 ¹²	SA m ³ / g	Hads kJ / mol
CeO ₂	nitrate	1.06	0.318	10.6	52.0
CeO ₂	oxalate	0.515	0.149	14.6	52.1

Urania films on GaPO₄ crystals: Humidity variation

Lancaste

Universit

NATIONAL NUCLEAR LABORATORY

TRANSCEND

Oxide	Prec. Salt	BET slope X 10 ¹³	BET incpt. x 10 ¹²	SA m ³ / g	Hads kJ / mol
UO ₂	nitrate	0.644	0.481	11.9	49.5
UO ₂	oxalate	0.775	0.214	12.2	50.4

18

Thoria films on GaPO₄ crystals: Humidity variation

Oxide	Prec. Salt	BET slope X 10 ¹³	BET incpt. x 10 ¹²	SA m ³ / g	Hads kJ / mol
ThO ₂	nitrate	TBD			
ThO ₂	oxalate	0.496	0.741	15.1	54.0

Films from oxalate on GaPO₄ crystals: Humidity variation

Oxide	Prec. Salt	BET slope X 10 ¹³	BET incpt. x 10 ¹²	SA m ³ / g	Hads kJ / mol
CeO ₂	oxalate	0.515	0.149	14.6	52.1
UO ₂	oxalate	0.775	0.214	12.2	50.4
ThO ₂	oxalate	0.496	0.741	15.1	54.0

TRANSCEND

20

Ceria water absorption: Temperature variation

The water saturated system (75°C, 100% rel. humidity) was then heated to approx. 400°C, causing the bound water to desorb as the relative humidity drops.

Approximately 20% of the water remains bound to the surface at 375°C.

Urania & Thoria films on GaPO₄ crystals

- Introduction to UK plutonium interim storage
- Synthesis of thin-layer actinide coatings
- Contact angle measurements
- Piezo-crystal nano-balance experiments

- Contact angle measurements of liquids on surfaces give an indication of the wettability of the surface.
- Surface irregularities disrupt droplet cohesion, increasing the wettability of a surface. Chemical characteristics also effect wettability.
- Therefore the surface finish resulting from different processing methods will alter the wettability.
- Plutonium's intrinsic radioactivity and high levels of decay heat causes surface damage during storage to an unknown extent.

```
r.cos\Theta_c = \cos\Theta_m

\gamma_{LG}.\cos\Theta_c = \gamma_{SL} - \gamma_{SG}

\Theta_{c=} contact angle

r: roughness factor

\gamma_{LG}: surface tension

\gamma_{SL}: solid-liq IE

\gamma_{SG}: solid-gas IE
```


Contact angle measurements: method

Water droplet on oxide nano-thick layer at 100% humidity, before and after UV irradiation.

- Measure contact angles of plutonium oxide analogues (CeO₂, ThO₂, UO₂, Ce_{1-x}Eu_xO₂) produced at
- range of calcination temperatures. a
- Vary humidity of the environment.
- Measure initial contact angles and variation in contact angle during evaporation.
- Automate droplet measurements using image recognition / machine learning.

Contact angle measurements calcination temperature

• Higher calcination temperatures result in more hydrophilic surfaces, and lower contact angles.

UO₂: 300°C

ThO₂: 300°C

ThO₂: 400°C

UO₂: 500°C

ThO₂: 500°C

- metal oxide layer on glass substrate (~ 10 ug metal / cm²), calcined at 300°C
- water droplet (1 uL) deposited at initial 40% humidity

Init. contact angle = 27°

Init. contact angle = 58°

- Calcination at higher temperature gives a lower initial contact angle.
- Rate of evaporation remains approx. the same.
- More contraction events seen for more hydrophilic surface.

Contact angle measurements: Further work

- Reduce size of equipment to fit through glove-box port.
- Improve camera / lighting to give better illumination and resolution.
- Improve automated image recognition.

- Collect more data at different humidities and calcination temperatures, of CeO₂, ThO₂, UO₂.
- Change pH and ionic strength (e.g. salt content) of droplets.
- Measure repeatability of on dry versus pre-wetted surfaces.

Conclusions

- Thin-layers of ceria and thoria (and Urania and plutonia) produced through drop-coating process onto glass and metal surfaces.
- Oxide-coated piezoelectric crystal electrodes used to measure the extent of water absorption onto the oxide surface via changes in frequency.
- Temperature and humidity of the system altered to produce isotherms and the energy of water binding determined.
- Contact angle measurement of water droplets on the oxide layers indicate the wettability and hydrophilicity of the surfaces. Pilot studies indicate significant differences between ceria and thoria, and effects due to calcination temperature and humidity.

Acknowledgments

Lancaster University Pat Murphy Richard Wilbraham

ITU

Detlef Wegen

NNL

Robin Taylor Robin Orr Dave Woodhead

Thanks for your attention

Atomistic Simulation of Helium Incorporation in PuO₂

Elanor Murray, University of Birmingham TRANSCEND/NDA/NWDRF Virtual Conference

3/12/2020 Zoom

TRANSCEND

Transformative Science and Engineering for Nuclear Decommissioning

Is it pressurised?

Has its structure changed?

Do I really want to open this?

Is it pressurised? Helium generation

Has its structure changed?

Is it still edible? Can it be used in future reactors?

what's it like inside?

Can it stay in the storage? Is it safe to remain in interim storage?

Do I really want to open this? Use computational chemistry methods

Helium Incorporation

- Static loading how much helium can the lattice accommodate?
- What are the likely trapping sites?
- Is helium diffusion vacancy assisted?
- *How does helium aggregate?*
- What is the mechanism for bubble formation?

Modelling procedure

GULP overview

Potential model

Found potential! But exp-6 not included in GULP so need to fit to standard form...

M. Read, S. Walker, and R. Jackson, vol. 448, no. 1, pp. 20 – 25, 2014.
R. W. Grimes, NASO ASI Series B, vol. 279, 1991.
V. Dremov, et al. Phys. Rev. B,vol. 77, p. 224306, 2008.

Fitting

Transformative Science and Engineering for Nuclear Decommissioning

NATIONAL NUCLEAR LABORATORY

He in Pure PuO₂ Single He Interstitials

Interstitial Sites

0.7

Energy Profile

х

0.7

0.6

0.4

0.3

0.7

0.6

0.5

0.4

У

0.3

0.7

0.6

0.5

0.4

х

0.3

0.7

0.6

He in Pure PuO₂ Build up of Helium

Two Helium Interstitials

Two Helium Interstitials

Dumbbell Configuration

Y. Yun, O. Eriksson, and P. M. Oppeneer, Journal of Nuclear Materials, vol. 385, no. 3, pp. 510 – 516, 2009. N. Kuganathan, P. Ghosh, A. Arya, and R. Grimes, Journalof Nuclear Materials, vol. 507, pp. 288 – 296, 2018.

Helium Loading

Defective PuO₂

Single Helium Atoms Incorporation

Defect Sites

Pu vacancy, O vacancy, Pu Frenkel pair, O Frenkel pair, Divacancy, Schottky Trio

Helium Incorporation at Vacancies

Oxygen vacancy

Plutonium vacancy

Helium Incorporation at Vacancies

Oxygen vacancy

Plutonium vacancy

Helium Incorporation at Vacancies

Plutonium vacancy

Site	E _d (eV)	E _{inc} (eV)	
Pu_vac	94.26	-0.23	
OIS	95.54	1.05	ſ

Plutonium Vacancy

Defective PuO₂ Helium build up

Six He surrounding an O vacancy

Six He surrounding a Pu vacancy

Six He surrounding a Divacancy

Normalised Incorporation Energies

Oxygen Frenkel Pair Results

Oxygen Frenkel Pair Configurations

	Type of defect	V [.] o position	O ^{i["] position}	Formation energy (eV)	Formation energy (eV/Defect)	Binding energy (eV/Defect)
6	OFP 1	(-1/4, -1/4, -1/4)	(1/2, 1/2, 1/2)	4.14	2.07	-0.60
	OFP 2	(-1/4, -1/4, 1/4)	(1/2, 1/2, 1/2)	4.23	2.12	-0.55

Oxygen Frenkel Pair Configurations

	Type of defect	V [.] o position	O _i " position	Formation energy (eV)	Formation energy (eV/Defect)	Binding energy (eV/Defect)
6	OFP 1	(-1/4, -1/4, -1/4)	(1/2, 1/2, 1/2)	4.14	2.07	-0.60
	OFP 2	(-1/4, -1/4, 1/4)	(1/2, 1/2, 1/2)	4.23	2.12	-0.55
	OFP 3	(1/4, 1/4, 1/4)	(1/2, 1/2, 1/2)	0.00	-	-

He in OFP 3

Oxygen doesn't recombine! He interstitial makes more Frenkel pairs possible

DB in OFP

Atomic relaxation

DB in OFP

Atomic relaxation

Lots of new questions!

- Does the helium push the oxygen?
- Which moves first?
- How close does the helium have to be for this rearrangement?
- What if there is more helium atoms in the OIS do more oxygen atoms move?

Great place to start a Molecular Dynamics simulation from...

What's Next?

Thanks to

Dr Mark Read - University of Birmingham Dr Rob Jackson – University of Keele Dr Helen Steele - Sellafield Ltd. Dr Robin Orr - NNL

Thank you

exm350@student.bham.ac.uk

References

- ◆ J. D. Gale, J. Chem.Soc., Faraday Trans., vol. 93, pp. 629–637, 1997.
- ✤ M. Read, S. Walker, and R. Jackson, vol. 448, no. 1, pp. 20 25, 2014
- ✤ N. A. Palmer. PhD thesis, 2019.
- R. W. Grimes, NASO ASI Series B, vol. 279, 1991.
- V. Dremov, P. Sapozhnikov, A. Kutepov, V. Anisimov, M. Korotin, A. Shorikov, D. L. Preston, and M. A. Zocher, Phys. Rev. B, vol. 77, p. 224306, Jun 2008.
- N. Kuganathan, P. Ghosh, A. Arya, and R. Grimes, Journal of Nuclear Materials, vol. 507, pp. 288 296, 2018.
- C. L. J. S. H. X. X. Tian, T. Gao, Eur. Phys. J. B, vol. 86, no. 179, 2013.
- M. Freyss, N. Vergnet, and T. Petit, Journal of Nuclear Materials, vol. 352, no. 1, pp. 144 150, 2006.Proceedings of the E-MRS 2005 Spring Meeting Symposium N on Nuclear Materials (including the10th Inert Matrix Fuel Workshop).
- ✤ X.-Y. Liu and D. Andersson, Journal of Nuclear Materials, vol. 498, pp. 373 377, 2018.
- Y. Yun, O. Eriksson, and P. M. Oppeneer, Journal of Nuclear Materials, vol. 385, no. 3, pp. 510 516, 2009.
- T. Petit, M. Freyss, P. Garcia, P. Martin, M. Ripert, J.-P. Crocombette, and F. Jollet, Journal of Nuclear Materials, vol. 320, no. 1, pp. 133–137, 2003. Proceedings of the 2nd Seminar on European Research on Materials for Transmutation

Impact of Am on the defect chemistry of PuO₂

William Neilson, Lancaster University w.neilson@lancaster.ac.uk

Supervisor: Dr Samuel T. Murphy

TRANSCEND Thematic Meeting

INTRODUCTION

This project has used atomistic simulations to understand the defect chemistry of PuO_2 , followed by investigating how Am is accommodated into PuO_2 and what impact Am has on the defect chemistry.

Defect chemistry:

- The formation of defects (the addition or removal of atoms from the perfect lattice) can describe deviations from stoichiometry in PuO₂, resulting in PuO_{2±x}
- Can examine the defect concentrations as a function of temperature and oxygen partial pressure.
- Describes how impurities, such as Am, are incorporated into the lattice .
- Help in understanding of how PuO₂ continues to evolve when kept in storage.
- May help identify hazards, such as the potential pressurisation of canisters used for storage.

Modelling the PuO₂ ground state

Create PuO₂ unit cell

*Fm*3*m* crystal symmetry 12 atoms Pu (blue) O (red)

Apply magnetic properties

tom	Magnetic moment	Longitudinal 3k anti- ferromagentic ground-			
1	(1, 1, 1)	state found and			
2	(-1, -1, 1)	adopted			
3	(-1, 1, -1)				
4	(1, -1, -1)				

J.T. Pegg *et al.*, *Phys. Chem. Chem. Phys.*, **20**, 20943-20951, 2018.

J.T. Pegg et al., J. Nucl. Mater, 492, 269-278, 2017.

Computational details

) *Simulate with DFT.* Computational method: VASP, PBEsol + *U* Noncolinear with spin orbit coupling.

Choose *U* value such that bandgap is reproduced. However large discrepancy exists in the reported bandgap:

```
McNeilly et al. reports a bandgap of 1.8 eV
McCleskey et al. reports a bandgap of 2.8 eV
```


U = 7.0 eV, reproducing hybrid functional (HSE06) band gap (3.04 eV).

2 x 2 x 2, 96 atoms

Adding intrinsic defects

Create supercell

Add defects to supercell

<u>REMOVE OXYGEN ATOMS</u> Oxygen vacancies: V_0^{\times} , V_0^{1+} and V_0^{2+}

 $\frac{\text{ADD PLUTONIUM ATOMS}}{\text{Plutonium interstitials: }} Pu_i^{\times}, Pu_i^{1+}, Pu_i^{2+}, Pu_i^{3+} \text{and } Pu_i^{4+}$

 $\frac{\textbf{REMOVE PLUTONIUM ATOMS}}{\textbf{Plutonium vacancies: } V_{Pu}^{\times}, V_{Pu}^{1-}, V_{Pu}^{2-}, V_{Pu}^{3-} \text{ and } V_{Pu}^{4-}}$

Defect formation: methodology

Defect formation: methodology

Vibrational entropies are obtained using empirical potentials due to limitations in computational resources; the force calculations required become very large when defects are introduced, due to the removal of symmetry.

The General Utility Lattice Program (GULP) together with the Cooper, Rushton and Grimes (CRG) potential is adopted.

The CRG potential is a many-body potential model used to describe actinide oxide systems which achieves good reproduction of thermodynamic and mechanical properties.

Defect formation: methodology

 $\mu_{Pu(s)}$: Obtained in DFT

- $\mu_{O_2}(P_{O_2}, T)$: Calculated as a function of pressure and temperature using real gas relations.
- $\mu_e = E_{VBM} + \varepsilon_F$: Fermi level computed such that the whole system is charge neutral Fermi-Dirac statistics applied to the electronic density of states to obtain the concentrations of electrons (e^-) in the conduction band and concentration of holes (p^-) in the valance band
 - μ_{Am} : Found in DefAP: Linear bisection finds values that achieve desired concentration of Am

Defect formation: methodology

The introduction of charge defects into the small simulation supercells accessible using DFT introduces a number of finite size effects, including coulombic interactions between the defect and its periodic image as well as with the background charge.

Use scheme of Kumagai and Oba which uses atomic site electronic potentials to compare perfect and defective supercell.

Difference in DFT energy (eV) between perfect supercell and V_{Pu}^{4-} containing supercell

Defect formation: methodology

$$c_i = m_i \exp\left(\frac{-\Delta G_f^i}{k_B T}\right)$$

Oxygen defects dominant

Brouwer diagram - Defect concentrations in ${\rm PuO}_2$ as a function of oxygen partial pressure. Temperature: 1000 K

Brouwer diagram - Defect concentrations in ${\rm PuO}_2$ as a function of oxygen partial pressure. Temperature: 1000 K

Brouwer diagram - Defect concentrations in PuO_2 as a function of oxygen partial pressure. Temperature: 1000 K

- Oxygen defects dominant
- Hyper-stoichiometry negligible
- Hypo-stoichiometry much more favourable
- Formally charged defects dominate at near-stoichiometry, non-formally charged defects become dominant with increased non-stoichiometry.

Adding americium defects

Plutonium substitutions: Am_{Pu}^{4-} , Am_{Pu}^{3-} , Am_{Pu}^{2-} , Am_{Pu}^{1-} , Am_{Pu}^{\times} , Am_{Pu}^{1+} , Am_{Pu}^{2+} , Am_{Pu}^{3+} , Am_{Pu}^{4+} and Am_{Pu}^{5+}

Accommodation of americium

Brouwer diagram - Defect concentrations in $Pu_{0.999}Am_{0.001}O_{2\pm x}$ as a function of oxygen partial pressure. Temperature: 1000 K

$Pu_{0.999}Am_{0.001}O_{2\pm x}$

- Oxygen defects are the dominant intrinsic defect and control the stoichiometry in Pu_{1-y}Am_yO_{2±x}. Hyper-stoichiometry always found negligible.
- Am is accommodated in Pu substitutions under all conditions.
- At * Am reduced from +IV to +III as partial pressure decreases, in agreement with experimental observation.

Comparison with experiment

Values of x in $Pu_{1-y}Am_yO_{2\pm x}$ as a function of oxygen partial pressure at y values of a) 0.09 and b) 0.072, with comparison to experimental results

M. Osaka, K. Kurosaki, S. Yamanaka, Oxygen potential of (Pu0:91Am0:09)O2-x, J. Nucl. Mater. 357 (2006) 69–76. doi:10.1016/j.jnucmat.2006.05.044.

T. Matsumoto, T. Arima, Y. Inagaki, K. Idemitsu, M. Kato, K. Morimoto, T. Sunaoshi,

Oxygen potential measurement of (Pu0:928Am0:072)O2-x at high temperatures, J. Nucl.

Sci. Technol. 52 (2015) 1296–1302. doi:10.1080/00223131.2014.986243.

Defect concentrations in $Pu_{1-y}Am_yO_{2\pm x}$ as a function of temperature. Oxygen partial pressure: 0.01 atm.

Defect concentrations in $Pu_{1-y}Am_yO_{2\pm x}$ as a function of Am concentration. Oxygen partial pressure: 0.01 atm. Temperature: 800 K.

Acknowledgements

- Dr. James T. Pegg
- Dr. Helen Steele
- The High End Computing facility at Lancaster University

Water Adsorption on $ThO_2(111)$ surface

Xiaoyu Han, University of Manchester

Nuclear Materials

2-3 December, 2020

The Sellafield nuclear reprocessing site in Cumbria © Redharc Images/Alamy

UK has the world's largest stockpile of the PuO_2 .

- Sellafield in Cumbria
- 2 "Magnox" research sites and 10 nuclear power stations

Inside of the PuO_2 storage container, water and other small molecules might interact with PuO_2

A major barrier to making progress --- lack of knowledge about the retired facilities.

ThO₂ as the surrogate for PuO₂

- Ionic radii
- The fluorite fm-3m structure
- +IV oxidation state
- No open-shell 5f electron as in PuO₂
- Less radioactivity as PuO₂ experimentally

Computational settings

- VASP
- PAW method
- 650 eV cutoff
- $5 \times 5 \times 5$ and $15 \times 15 \times 15$ k point mesh for bulk geometry relaxation and pDOS, respective
- For the slab, 2×2 supercell with 5 layers, the bottom 2 layer fixed.
- Dipole correction along the surface direction
- 15 Å vacuum slab
- DFT- D4 correction for the vdW correction
- Ci-NEB method for the dissociation energy calculation
- The elementary reaction free energy were calculated, $\Delta G = \Delta E_{DFT} + \Delta E_{ZPE} T\Delta S$

OUTLINE

- \bullet The computational challenge of the ThO₂;
 - The Dudarev approach vs The Liechtenstein approach;
- \bullet The water reaction on the ThO₂ (111) surface;
 - 1st water adsorption and dissociation;
 - 2nd water adsorption and dissociation;

The historical trends in maximal deviation of the density produced by various DFT methods from the exact one. ¹

Lattice parameters error

$$\sigma_L = \frac{L - L_{exp}}{L_{exp}}$$

Bandgap errors

$$\sigma_{gap} = \frac{G - G_{exp}}{G_{exp}}$$

the root mean square error (RMS)

$$\sigma_{RMS} = \sqrt{\frac{\left(\sigma_L^2 + \sigma_{gap}^2\right)}{2}}$$

1. Science Vol. 355, Issue 6320, pp. 49-52

TRANS END

0.150-

0.145

0.140-

0.130-

0.125-

0.120

GGANU

GGA with U_{eff} = 5 eV

SW2 0.135

The Dudarev approach

LDA+U LDA+U+50C

U_{eff}=4

U_{eff}=5

GEATUTSOC

Transformative Science and Engineering for Nuclear Decommissioning

The Liechtenstein approach

Balanced the mechanical and electronic properties

When U = 6 and J = 0, LDA+U using GGA functional give the best performance

Long pair v.s. H bond

Step 1 $H_2 0 + * \rightarrow {}^* H_2 0$

$\Delta \mathbf{G_0}$	298K (RT)	500K
0-leg	-0.82 eV	-1.31 eV
1-leg	-0.46 eV	-0.95 eV
2-leg	-0.78 eV	-1.26 eV

- Exothermic reaction
- High T promotes the reaction

Lone pair > H bond

TRANSCEND

Transformative Science and Engineering for Nuclear Decommissioning

Charge difference of H_2O@ThO_2(111) The Bader charge analysis^{*} on the (111) ThO₂ vs. bulk

Blue - Yellow +	$(0.001 \text{e/r}_{b}^{3})$
-----------------	------------------------------

	Before adsorption	After adsorption
Top layer O (6)	7.39	7.39
Top layer Th (12)	9.24	9.19
2 nd layer O(6)	7.38	7.41
3 rd layer O (6)	7.38	7.41
water	8	8.04

Summary

- 1. Water adsorption is an **Exothermic reaction**;
- 2. Water **lone pair** outplay the H bond
- 3. The surface back donate electron to water;
- 4. More polarized hydroxyl group in water for further water splitting.

Step 2 $^*H_2O \rightarrow ^*OH + ^*H$

State of the second sec

The dissociation energy barrier E_d is only **14.8 meV**

The desorption E (0.88 eV) is more than 55 times larger than $E_{d;}$ K_bT at Room temperature is 25 meV.

The water dissociation is barrierless

The hybridization of H with O_{water} , the surface O remain unchanged; Only the O_{water} moved to the lower level.

The splitting of water is driven by itself

 The "wetted" surface is ready for further water adsorption

Transformative Scien

Step 3
$$H_2O_{2nd} + {}^*H + {}^*_0OH \rightarrow {}^*H_2O_{2nd} + {}^*H + {}^*OH$$

A: the water interact with substrate first B the water interact with the hydroxyl group

A1 A2 A3 0-leg E_{ad} -0.88 eV -1.06 eV -0.89 eV -0.86 eV A1: Th atom nearby –O_{bulk}H group $\Delta G_{2(rt)}$ -0.82 eV -0.89 eV -0.77eV -0.72 eV A2: Th atom nearby –O_{water}H group A3: far away -1.31 eV -1.38 eV -1.26 eV -1.21 eV $\Delta G_{2(500)}$

Summary

The "wetted" surface promote further water adsorption at nearby –O_{sub}H hydroxyl group

- All possess much higher energy barrier than the first water splitting
- Exothermic reaction for the 2nd Water splitting but water at A3 site tends to desorption

Summary

- Systematic studied the two DFT+U approaches of the prediction of the ThO_{2;}
- Provide a balanced consideration on both mechanical (lattice) and electronic (bandgap) properties;
- The ThO₂ (111) surface is hydrophilic and undergoes barrierless water dissociation at RT.
- The "wetted" surface even more attract water;
- However, it requires more energy to overcome the dissociation energy of the 2nd water.

Acknowledgements

- Prof. N. Kaltsoyannis and the group members
- EPSRC: EP/S01019X/1;
- Archer HPC and Grace@UCL and their associated services;

Thank you

xiaoyu.han@Manchester.ac.uk

Assessment of zirconolite as a suitable wasteform for Pu immobilisation: first/initial results of durability experiments

<u>Clémence Gausse</u>, Ellie Ormerod, Laura J. Gardner, Neil C. Hyatt, Martin C. Stennett and Claire L. Corkhill NucleUS Immobilisation Science Laboratory, University of Sheffield, United Kingdom

3rd December 2020 Virtual meeting

Context

- Upon completion of fuel reprocessing, the UK will have a stockpile >140t of PuO₂
- Dual track strategy of immobilisation & reuse by MOX fabrication for LWR

- Not all Pu will be suitable (Am-241 ingrowth) for MOX

- Commercial case for MOX utilisation uncertain
- Wasteform selected for Pu immobilisation will need to play a functional role in supporting safe disposal

- Retaining Pu and its daughters for over 100,000 years

- Hot Isostatic pressing identified as possible thermal treatment for PuO₂ wastes
 - ✓ Uniform incorporation of radionuclides
 ✓ Batch process (inventory control)
 ✓ No off-gas production
 ✓ Minimal secondary wastes produced
 ✓ Hermetically sealed wasteform
 ✓ Facilitates high waste-loadings
 - ✓ Facilitates high waste-loadings
 - ✓ Significant cost saving

• Natural mineral present in a wide variety of localities in Earth

- Demonstrates a good chemical flexibility (incorporation of various cations)

- High durability and radiation tolerance

- Full ceramic suitable for relatively pure Pu-residues
- Glass-ceramic suitable for higher impurity Pu-residues

1. Synthesis & characterisation of the zirconolite ceramic & glass-ceramic

2. Investigate the zirconolite *durability* via dissolution experiments

Synthesis of Ce-zirconolite glass ceramic

- CaZr_{0.9}Ce_{0.1}Ti₂O₇: Na₂Al₂Si₆O₁₆ (70:30 ceramic glass ratio)
- Hot isostatic pressing (HIP) \rightarrow Uniformly dense samples & void removal

 $CaZr_{0.9}Ce_{0.1}Ti_2O_7:Na_2Al_2Si_6O_{16}$

Characterisation of Ce-zirconolite glass ceramic

TRANSCEND

- No evidence of the perovskite CaTiO₃ phase on the XRD pattern
- ZrO₂ rich phase & Ca rich phase evidenced on SEM/EDS analyses

4.734 g/cm³

•

- Max pressure 100MPa
- 10 hours

Conclusion

1. HIPed zirconolite glass-ceramic & ceramic synthesised

2. HIP resulted in secondary phase formation, but a uniformly dense structure

3. First results in dissolution evidenced a great durability after 256 days

4. Dissolution experiments initiated for zirconolite glass-ceramic

Future work

- Determine the initial amount of secondary phases
- Synthesis & characterisation of HIPed U-doped zirconolite glass-ceramic
- Initiate static and dynamic dissolution experiments at different temperatures and acidity

We acknowledge financial support from the Radioactive waste management and EPSRC under grant number EP/156044-11/1. This research utilised the HADES/MIDAS facility at the University of Sheffield established with financial support from EPSRC and BEIS, under grant EP/T011424/1.

Thank you!

Special thanks to:

Laura Gardner Lewis Blackburn Dan Bailey Amber Mason Paul Heath Claire Corkhill ISL team

Radioactive Waste Management

