

A Geometrical Model of Alpha Radiation Dosimetry (redacted for publication purposes)

By Angus Siberry,

University of Bristol

UOB Oper

Transformative Science and Engineering for Nuclear Decommissioning Alpha Radiation

Alpha radiation: Commonly occurs from heavy elements, low penetration depth in materials in micron range. Activity **prevalent** in spent fuel throughout longterm storage.

Alpha Dose: the energy received by **per unit mass** of a medium through exposure to alpha radiation **Unit:** Gray or JKg⁻¹

[1] Liu, Nazhen, et al. *Corrosion* 75.3 (2019): 302-308.

Interaction with water

Interim Wet storage (Spent fuel Pond)

Sellafield Ltd

Geological Disposal Facility (GDF)

Radiolysis and induced fuel dissolution

[1] Liu, Nazhen, et al. Corrosion 75.3 (2019): 302-308.

Problem Statement

Legacy Ponds are open ponds with spent fuel of predominantly UO₂

No known models able to predict rate of alpha dose as a function of particle size < 50 μ m in fuel pond storage. Hence determine radiolytic generation of H₂, H₂O₂, OH-,... in the event of fuel exposure to water

TRANSCEND

Transformative Science and Engineering for Nuclear Decommissioning

Linear Energy Transfer (SRIM)

 A_{cap}

δ

Sellafield Ltd

X

Transformative Science and Engineering for Nuclear Decommissioning

0.5 $P_{\alpha}(\mathbf{x})$

0.4

0.3

Probability of alpha particle escape (planar)

- Assuming all decays travel in a stochastic nature,
- The possible decay positions can me considered a spherical shell [2-4]

$$P_{\alpha}(x) = \frac{A_{cap}}{A_{shell}} = \frac{(\delta - x)}{2\delta} \qquad P_{\alpha} = \underline{0.25} \qquad 0.1$$
$$-\delta_{UO2}^{-14} - 12 - 10 - 8 - 6 - 4 - 2$$

[2] Hosoe, M., et al. *Nuclear Instruments and Methods in Physics Research* (1984): 377-381.
[3] Nielsen, Fredrik, and Mats Jonsson. *Journal of nuclear materials* 359.1-2 (2006): 1-7.
[4] Dzaugis, Mary E., *Radiation Physics and Chemistry* 115 (2015): 127-134.

Problem Statement

Legacy Ponds are open ponds with spent fuel of predominantly UO₂

No known models able to predict rate of alpha dose as a function of particle size < 50 μ m in fuel pond storage. Hence determine radiolytic generation of H₂, H₂O₂, OH-,... in the event of fuel exposure to water

Derivation and results due to be published in

Radiation Physics and Chemistry May 2021

- α -particles starting with a different decay energy than 5.8MeV or 5.3MeV?
- A mix of isotopes in the fuel possessing different E₀ and Activity values?
- Different densities or fuel type?
- What about dose rates inside cracks in the fuel matrix?
- The results from this model Radii > 50 μ m?

Alpha Dose Rate Calculator

Available in Ubuntu, Windows and Mac OS Click here to download

Acknowledgements:

Supervisor: Ross Springell

Industry Supervisors:

NNL – David Hambley Sellafield – Anna Adamska

as14659@Bristol.ac.uk

Conclusion

Planar model:

- Good performance over current models
- Highlighted issues with 2D models and model by Hansson et al. (2020)
- Emphasises the importance of deriving probability of alpha escape analytically

Spherical model:

- Derivation for probability of alpha escape $P_{\alpha}(R,r,\delta)$ dramatically reduces calculations required before convergence. (Never been done before)
- Model agrees with MCNP modelling approach done by Tribet (2017) yet can be implemented in Python,C,C++ with fast computation time

Future work:

Link radiolysis results to dissolution model in COMSOL (inc Beta radiation)

Investigating Uranium Corrosion in different environments Using X-ray Tomography

Dr Haris Paraskevoulakos, University of Bristol TRANSCEND/NDA/NWDRF Virtual Conference

INDUSTRIAL CASE

- As of March 2015, the FGMSP has processed 27,000 tonnes of nuclear fuel (14,000 m³ of contaminated water)
- Content: Magnox (Mg-Al alloy) cladding and uranium swarf
- Over the storage period
 Corrosion of Magnox cladding
- Formation of sludge (CMS)

NOWADAYS

Pond decommissioning (Uranium and CMS)

•

- What is the uranium state?
- □ Has it corroded in the CMS environment ?
- What are the corrosion products ?

Sellafield Ltd: (FGMSP) The storage pond has processed 27,000 tonnes of nuclear fuel

THEORY

 $Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$

 $U+2H_2O \rightarrow \boldsymbol{UO_2}+\boldsymbol{H_2}$

 $2U + 3H_2 \rightarrow 2UH_3$

HAZARDS

- Radioactivity/Toxicity
- Hydrogen Flammability
- **UH**₃ Pyrophoricity

Transformative Science and Engineering for Nuclear Decommissioning

Scans

- Low-resolution, high FOV (~30µm/pixel, ~1 h 30 mins per scan)
- High-resolution, low FOV (~2.8µm/pixel, ~20 hours per scan)

Data Collection

- > 20 days after preparation
- > 50 days after preparation
- > 360 days after preparation
- > 540 days after preparation

20 Days Post Preparation

- First signs of corrosion
- Crater/blister type of morphology – No Layer
- No signs of corrosion across lower uranium

50 Days Post Preparation

- > Corrosion Product Volume Growth
- Signs of Coalescence
- > Migration away from the Corroding Front
- Intact Low Surfaces

360 Days Post Preparation

- Significant growth of Corrosion Product Volume
- Coalescence at the Top Part of the Specimen
- Signs of Corrosion across the Middle Height
- Intact Low Surfaces

540 Days Post Preparation

- Corrosion product volume remained constant
- Intact low surfaces
- > Further migration of particles away from the uranium

Quantitative Analysis

- Image processing software Avizo®
- Material segmentation (Uranium, Corrosion products)
- Determination of relevant volumes
- > Calculation of corrosion percentage
- > Calculation of corrosion rate

Corrosion Rate vs Time (Against Literature)

*Uranium was used in as-received state **Uranium was pickled in nitric acid prior to encapsulation

Corrosion Rate vs Temperature (Against Literature)

** Uranium was pickled in nitric acid prior to encapsulation

C. Paraskevoulakos et al. Monitoring uranium corrosion in Magnox sludge using X-ray computed tomography: A direct analogue to "legacy" fuel storage ponds. Corros. Sci., vol. 168 (2020)

Uranium Corrosion in Mixed Grout Systems

- Custodians of 14 samples originally produced by NNL
- Uranium long term (~15 years) metallic corrosion in mixed grout (and/or sludge) formulations
- Corrosion under ambient conditions
- Calculation of corrosion rate using gas monitoring (H₂ pressure)

- > What is the state of uranium?
- > What is the state of corrosion products?
- What is the identity of corrosion products?
- What is the state of the encapsulants?

Primary Research Activities

- \succ X Ray Tomography
- National Composite Centre (NCC)
- High Energy X-Ray beam (<320 kV Limited Energy)
- 7 samples scanned
- Voxel resolution 83.5 μm
- > FOV: Entire Sample

Targets

- Uranium corrosion magnitude
- Uranium corrosion product identity
- 3D mapping of uranium corrosion products diffusion/migration
- Grout damage magnitude (crack volume)
- Corrosion-Degradation quantitative correlation

Transformative Science and Engineering for Nuclear Decommissioning Primary Results-Visualisation

Natural Uranium disc (137.35 g)

➢ Grout (5:1 GGBS/CEM I)

> No Sludge

Primary Results-Material Segmentation

Primary Results-Material Segmentation

> 3D Crack Volume Rendering

> 3D Uranium Volume Rendering

Primary Results-Material Segmentation

Quantitative Analysis

- Volume of uranium plus corrosion products (3.57 % of entire volume)
- Volume of cracks (10.15 % of entire volume)

Quantitative Analysis Pros

- Comparison between samples (Crack volumes – Grout Degradation)
- Grout Porosity
- Corrosion Percentage

Future Research Activities

- XRT at higher energy (Full Power at 320 kV
- Higher geometric magnification
- Scanning of all samples
- ISIS Neutron Imaging
- ISIS Neutron Diffraction

Acknowledgments

Dr Chris Jones
Dr Yusuf Mahadik
Prof Tom Scott
Dr Genoveva Burca

Thank you

Contact Details

In-situ Small Punch Test for Stress Corrosion Cracking

Kuo Yuan University of Bristol Transcend theme meetings 2020

2nd December 2020

My Research

Development of micromechanical testing methods for spent AGR cladding to examine effects of sensitisation and stress corrosion cracking (NNL)

- Use surrogate materials such as thermally sensitised 304 stainless steel to develop the micromechanical testing methods
- Digital Image Correlation will be used to track the development

Fig. 1. SEM image of a stress corrosion crack; the crack initiation site is highlighted^[1]

Fig. 2. DIC strain mapping of the development of a crack ^[1]

[1] Stratulat, A., Duff, J., Marrow, J. (2014), Grain boundary structure and intergranular stress corrosion crack initiation in high temperature water of a thermally sensitised austenitic stainless steel, observed in situ, Corrosion Science, 85, 428-435

Why Small Punch Test?

Fig. 3. a small punch test rig with a mirror to accommodate DIC^[2]

- SPTs are used to determine the mechanical properties
- Only a small sized sample is required, ideal for ex-serviced AGR cladding materials
- The service condition of the material can be introduced, e.g. LWR conditions and storage pond condition
- DIC can also be introduced to monitor the cark propagation

[2]V. D. Vijayanand *et al.,* "A novel methodology for estimating tensile properties in a small punch test employing in-situ DIC based deflection mapping," *J. Nucl. Mater.*, p. 152260, 2020, doi: 10.1016/j.jnucmat.2020.152260.

My Design

Fig. 4. modified small punch test rig with a loop system

- Previous tests either applied the solution on the specimen [3] or submerged the whole rig into the solution [4]
- A loop will be used in the system to introduce the corrosive solution
- A window is used to seal the specimen hold and also allows DIC observation with the mirror

[3] J. Isselin, A. Kai, K. Sakaguchi, and T. Shoji, "Assessment of the effects of cold work on crack initiation in a light water environment using the small-punch test," Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 39 A, no. 5, pp. 1099–1108, 2008, doi: 10.1007/s11661-008-9492-7.

[4] T. Bai and K. Guan, "Evaluation of stress corrosion cracking susceptibility of nanocrystallized stainless steel 304L welded joint by small punch test," *Mater. Des.*, vol. 52, pp. 849–860, 2013, doi: 10.1016/j.matdes.2013.06.019.

In-situ Synchrotron test for SCC

- Cracks can propagate in 3D
- In-situ synchrotron tests are proposed to observe the cracks with Digital Volume Correlation by reconstructing the tomography
- A tensile load is applied on the specimen and a similar circulation of corrosive solution is introduced
- The results of DIC and DVC will be compared

Fig. 5 testing rig for in-situ synchrotron test with inlet and outlet for the solution

Acknowledgement

This project is funded by TRANCEND and NNL

Supervised by Mahmoud Mostafavi (UoB) and Ronald Clark (NNL)

k.yuan@bristol.ac.uk

Drying of Spent AGR Fuel

Thomas Bainbridge, University of Leeds

Theme Meeting 3

Motivation

- To support NDA strategy / decision making on the long term storage and disposal of SNF.
- In dry storage / disposal any water remaining can cause additional corrosion.
- Also potential for the water to undergo radiolysis producing H_2 and H_2O_2
- Do not want these products formed H₂ is flammable and explosive while H₂O₂ will accelerate any corrosion occurring.
- SNF must therefore be dried before storage / disposal to reduce this risk.

AGR Fuel element [1]

<u>Aim</u>

 To create a process model for drying spent fuel through radiation induced stress corrosion cracks in AGR fuel cladding.

Sections

Computational

- Model drying through a complex crack.
 - Obtain geometrical parameters of the crack.
 - Apply fluid dynamics calculations to find the flow through the crack.

Experimental

- Produce representative cracks in stainless steel.
- Generate test pieces of cracked stainless steel for use in the drying rig.
- Use the drying rig to validate the process model.

Failed AGR cladding [2]

Modelling of Cracks and Pinholes

- Start on a pinhole to be able to compare to experimental data from currently available samples.
- If computation matches experimentation progress to multiple connected pinholes/sharp edged orifices.
- Finally move to complex, tortuous cracks.

Pinh	ole	
Г р	Iultiple connected inholes	
	Complex crack	

Bomelburg [3]

• Mainly used for determining flow rate through a sharp edged orifice.

$$Q = \alpha a \psi_{max} \sqrt{2gP_0\rho_0}$$
$$\psi_{max} = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{(\gamma-1)}}$$

Beck [4]

• For idealised cracks.

$$Q = u \cdot d_{eff}$$
$$0 = \frac{2 u}{\rho} \left[\frac{12 \mu l_{eff}}{d_{eff}^2} \right]$$

Sharp edged orifice

[3] Bomelburg, H.J. Estimation of gas leak rates through very small orifices and channels. Battelle Pacific Northwest Labs., 1977 [4] Beck, S.B.M., Bagshaw, N.M. and Yates, J.R. Explicit equations for leak rates through narrow cracks. International Journal of Pressure Vessels and Piping. 2005, 82, pp.565-570.

<u>Gill</u>

L-b-B [5]

• Single phase leakage through narrow orifice.

 $m = 2\rho(z)awu(z)$

 $m = C_D (p_0 \rho_0)^{\frac{1}{2}} w l$

• Can be adapted for turbulent flow.

ODE [6]

• ODE system for idealised crack.

$$\begin{pmatrix} \frac{\partial u}{\partial T} & \frac{\partial u}{\partial P} & -\frac{u}{v} \\ 0 & 1 & \frac{v}{u} \\ \frac{\partial h}{\partial T} & \frac{\partial h}{\partial P} & v \end{pmatrix} \begin{pmatrix} \frac{dT}{dz} \\ \frac{dp}{dz} \\ \frac{dv}{dz} \end{pmatrix} = \begin{pmatrix} \frac{u}{A} \frac{dA}{dz} \\ -\frac{P_f}{A} \frac{1}{v} \frac{dF}{dz} \frac{v^2}{2} \\ \frac{P_f qu}{Av} \end{pmatrix}$$

- Solution procedure assumes isentropic flow.
- Iterative until max and min flow within user chosen tolerance.

[6] P. Gill, J. Sharples and P. Budden, Leakage Rates Through Complex Crack Paths Using An ODE Method, Proceeding of the ASME 2015 Pressure Vessels and Piping Conference, 2015

Image Analysis

- Need a way to analyse cracks once produced.
- Find path length through the crack and the average width of the crack.

Steps:

- 1) Manually "tidy" the image.
- 2) Convert the image to a binary image.
- 3) Skeletonise and remove spurs.
- 4) User selects the start and end of the "main" part of the crack.
- 5) User inputs coordinates of a edge pixel from the "triangle section".

Failed Cladding Crack

Sample	Measured		Calculated		% Variation	
	Length	Width	Length	Width	Length	Width
Failed Cladding	412.5	50	442.1	49.7	10.5	0.7

Corrosion Cracks

Variation on pinhole tests: Length < 1% Width <5%

Variation on geometric tests: Length < 5% Width < 5%

\cap	ſ	

Sample	Measured		Calculated		% Variation	
	Length	Width	Length	Width	Length	Width
а	5.94	0.64	6.27	0.54	5.68	15.67
b	5.94	0.66	6.75	0.66	13.77	0.22
с	4.50	0.25	5.10	0.27	13.38	9.52
d	4.63	0.38	4.93	0.38	6.57	0.71

[7] J.R. Rajaguru, Arunchalam Nara, Investigation on Machining Induced Surface and Subsurface Modifications on the Stress Corrosion Crack Growth Behaviour of Super Duplex Stainless Steel, Corrosion Science, 2018

DET Rig Design

- Lower jaw fixed to base.
- Upper jaw allowed to move and rests on sample.
- Deflection applied using central screw.
- Trace heating wire and thermocouple wires brought to sample through holes on the side.
- Hole in screw to allow for deflection measurement as well as solution delivery.
- Dowels to guide top jaw onto sample with minimal rotation.

Future Work

Experimental

- Begin experimental work to crack plate samples.
- Analyse cracked samples.
- Conduct permeability tests.
- Crack stainless steel tube.
- Conduct drying experiments using the drying rig.

Computational

- Refine crack analysis code.
- Finalise code from Gill ODE method and validate.
- Adapt most suited code to include effects of vacuum pump and water in the pin.
- Validate final code.

Acknowledgements

Academic Supervisor: Prof. Bruce Hanson

Industrial Supervisor: Dr Carlos de la Fontaine

Thank you

pmtoba@leeds.ac.uk

In-situ Identification of Surface Corrosion Products on Spent Nuclear Fuels

Victoria L. Frankland, Antoni Milodowski, Joshua Bright, Sam Rickman and David Read University of Surrey, Guildford, UK

2nd December 2020 TRANSCEND Theme Meeting

Alteration of Spent Nuclear Fuel

Alteration of U metal and UO₂ can follow several pathways

Environment	Potential SNF Species		
Oxidising/fresh	Uranyl (per)oxides ((meta)schoepite, (meta)studtite, ianthinite)		
Cementitious	<i>Ca uranyl oxides</i> (becquerelite, calcium uranates, clarkeite) <i>Ca uranyl silicates</i> (uranophane, haiweeite)		
Groundwater	<i>Uranyl carbonates</i> (rutherfordine, liebigite, zellerite) <i>Uranyl silicates</i> (boltwoodite, uranophane, soddyite, weeksite) <i>Uranyl phosphates</i> (autunites), <i>arsenates, vanadates, etc</i>		
Seawater	<i>Uranyl oxides</i> (schoepite) <i>Metal uranyl oxides</i> (becquerelite, compreignacite)		

Aims and Objectives:

Characterise all the potential alteration products using remotely operated techniques.

Possible Remote Operation Characterisation Techniques

Laser-induced breakdown spectroscopy (LIBS)

Multiple-laser Raman

Time-resolved laser fluorescence spectroscopy (TRLFS)

Elemental abundance

Surface mapping

Depth mapping

- Structural information

Phase identification

Uranophane-type Samples

- Uranyl silicates
 - Boltwoodite
 - Uranophane
- Form in cementitious and groundwater environments.
- Can incorporate other radionuclei into their crystal structure matrix

Boltwoodite; K,Na(UO₂)(SiO₃OH)-1.5(H₂O)

TRANSCEND

Raman Spectra

Uranophane phase sensitive *v*₃(SiO₄)²⁻ mode:

Our mixed sample 1290, 1218 and 1144 cm⁻¹

 $-\alpha = 1272$ and 1169 cm⁻¹ (Frost et al., 2006)

 $-\beta = 1210$ and 1042 cm⁻¹ (Colmenero et al., 2019)

Boltwoodite: Frost et al. (2006a)

Uranophane: Biwer et al. (1990); Frost et al. (2006a, b); Wall et al. (2010); Driscoll et al., (2014); Bonales et al. (2015, 2016); Colmenero et al. (2019)

Luminescence Emission Spectra

Uranophane Emission Spectrum

Luminescence Excitation Spectra and Decay

Conclusions

- Raman spectroscopy is very effective for identifying main phases (e.g. autunites)
- Time-resolved laser fluorescence spectroscopy can potentially differentiate hydration states (e.g. autunite vs meta-autunite)
- Luminescence quenching dependent on:
 - Associated metal cation
 - Ligand in the uranyl sheet

Future Work

- Expand the range of uranyl-bearing minerals and synthetic compounds. Incorporate new LIBS characterisation
- Construct spectral database for nuclear specific compounds.
- Perform "blind testing exercise" on a selection of our characterised U phases using apparatus at the University of Bristol

Loan of minerals: Kay Green (BGS) Tom Cotterell (NMW) Mike Rumsey (NHM)

Instruments: LIBS - Dr Monica Felipe-Sotelo Raman - Dr Carol Crean - Dr Rachida Bance-Soualhi SEM-EDX - David Jones XRD - Dr Dan Driscoll

Funding:

Density Functional Theory Modelling of UO₂ Crystal surfaces in the Context of Spent Nuclear Fuel Alteration

Joshua W. G. Bright¹, Victoria L. Frankland¹, Marco Sacchi¹ and David Read¹

2 Dec 2020

¹ Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

PhD project focus, Year 2

- Experiment and computational modelling together to determine alteration mechanism of UO₂ fuels.
- **Experiment Spectra Composition** Structure Reactivity **DFT Model** Simulation
- Use of thin films and laser based techniques to study surface reactions in real time in tandem with surface alteration reaction simulations.
- Full characterisation of reactants and products.

Predicting the Alteration of Spent Nuclear Fuels

• Alteration of uranium fuels is expected to lead to the formation of any of the 250+ naturally occurring uranium minerals.

Experimental Techniques

- Laser Ablation / Laser Induced Breakdown Spectroscopy
 - Sample introduction method for ICP-MS
 - Atomic spectroscopy technique probing atomic and ionic electronic structure.
- Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
 - Mass spectroscopy technique suited for total elemental analysis.
- Raman Spectroscopy
 - Vibrations characteristic to bonding environments.
- Fluorescence Spectroscopy
 - Electronic transitions probing of solid state band structures.

Initial characterisation by Fluorescence, Raman, SEM, AFM, XRD, UV-vis and IR

Deliberate alteration with known solution in closed system, real time Raman analysis of alteration

Resulting solution analysed by Fluorescence and ICP-MS to determine dissolved species

Altered surface characterised by Fluorescence, Raman, SEM, AFM, XRD,UV-vis and IR

Fluorescence Spectrum from UO₂ Mineral Sample

- Natural UO₂ mineral sample
- Evidence for surface alteration with U(VI) peak at 554.0 nm.

Future Experimental Work: Detector

Thin Film Alteration

- Monitor real time alteration with Raman spectroscopy.
- Identify dissolved species with Fluorescence spectroscopy and ICP-MS of remaining solution.
- Elemental map of reactants and products with SEM-EDX, Raman and LA/LIBS-ICP-MS.

Analogue	Deionised Water	Simulated storage pond water	Simulated deep groundwater
Epitaxial thin films			
Crystalline UO ₂			
Sintered UO ₂ pellets			
(AGR UO ₂ Pellets)			

Laser

SNF analogue

In-Situ Alteration Experiment

• Surface morphology with AFM.

Experimental matrix

The Bridge Between Simulation and

Experiment

- Combining techniques creates a more complete understanding of reactivity, composition and structure.
- Alteration of epitaxial UO₂ thin films in tandem with simulating these reactions on selected surface orientations.
- Simulations of reactant and product spectra.

DFT Model

Experiment

Spectra

Composition Structure Reactivity

Simulation

Why Simulate Spectra?

Example of Simulated Raman for Mg(OH)₂

- Certainty that spectrum produced represent the sample modelled.
- Visualisation of phonon/vibrational modes responsible, aiding in identification of Raman/IR shifts.

Raman active 290 cm⁻¹ v_2 (MgO)

Raman active 775 cm⁻¹ v_2 (OH)

Raman active 3686 cm⁻¹ v_1 (OH)

Preparation of UO₂ Surfaces for Simulation

- The UO₂ [001] and [110] surface orientations have been prepared for reaction modelling with DFT.
- For this work, CASTEP 19.11 and the Perdew-Burke-Ernzerhof (PBE) functional were used.

Polar surface Higher surface energy

More reactive

110

Non-polar surface Lower surface energy

More stable

Clark et.al., *Z. Kristall.*, 2005, 220, 567-570 Perdew et.al., *Physical Review Letters*, 1996, 77, 3865-3868 Springell *et. al.*, *Faraday Discussions*, 2015, 180, 301-311 Skomurski *et. al.*, *American Mineralogist*, 2006, 91 (11-12), 1761–1772

Future Computational Work:

Simulating thin film alteration

- Match surface reaction modelling to experimental reactions on epitaxial thin films, specifically with oxidising components produced by water radiolysis in pond water.
- Model Raman and IR spectra of reactants and alteration products. Allows for direct comparisons to experimentally obtained Raman and IR.
- Determination of the mechanism for UO₂ SNF alteration.

	Control	Simulated Pond Water			
UO₂ Surface	H ₂ O	H ₂ O ₂	OH [.]	HO ₂ .	OH-
001					
110					

In Conclusion...

 Initial experiments show promising results for identifying partially altered UO₂ phases.

 Experimental techniques selected and workflow designed to investigate alteration of selected analogues in simulated pond water and groundwater environments.

 UO₂ surfaces prepared for computational simulations of surface reactions.

• Computational techniques selected and workflow designed to investigate alteration of selected surface orientations in simulated pond water environment.

Transformative Science and Engineering for Nuclear Decommissioning

Thank you

Acknowledgements

- LIBS Dr Monica Felipe-Sotelo
- Raman Dr Carol Crean
 - Dr Rachida Bance-Soualhi
- SEM-EDX David Jones
- XRD Dr Dan Driscoll

Funding

